Convex (0,1)-matrices and their epitopes
We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2021-07, Vol.297, p.21-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | |
container_start_page | 21 |
container_title | Discrete Applied Mathematics |
container_volume | 297 |
creator | Brualdi, Richard A. Dahl, Geir |
description | We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S). |
doi_str_mv | 10.1016/j.dam.2021.02.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534641816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X21000937</els_id><sourcerecordid>2534641816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-16d136090bb4ab2def2a8c12b612491c6e5e579f3b4a2ff2ceab71d180e3a7553</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8FLyvYOjNtky6eZPELFrwoeAtpOsUUt61JV_Tfm2U9exqGeZ-Z4RHiHCFDQHndZY3ZZASEGVAGeXUgZlgpSqVSeChmMSNTwurtWJyE0AEAxm4mFquh_-LvZAFXeJluzOSd5ZCYvkmmd3Y-4dFNw8jhVBy15iPw2V-di9f7u5fVY7p-fnha3a5TS0pNKcoGcwlLqOvC1NRwS6aySLVEKpZoJZdcqmWbxzG1LVk2tcIGK-DcqLLM5-Jiv3f0w-eWw6S7Yev7eFJTmReywAplTOE-Zf0QgudWj95tjP_RCHonRHc6CtE7IRpIRyGRudkzHN__cux1sI57y43zbCfdDO4f-heopGYD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534641816</pqid></control><display><type>article</type><title>Convex (0,1)-matrices and their epitopes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Brualdi, Richard A. ; Dahl, Geir</creator><creatorcontrib>Brualdi, Richard A. ; Dahl, Geir</creatorcontrib><description>We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2021.02.038</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Convexity ; Essential set ; Mathematical analysis ; Matrix methods ; Permutation matrix ; Permutations ; Polyomino ; Zero-one matrix</subject><ispartof>Discrete Applied Mathematics, 2021-07, Vol.297, p.21-34</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-16d136090bb4ab2def2a8c12b612491c6e5e579f3b4a2ff2ceab71d180e3a7553</cites><orcidid>0000-0002-7481-6382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2021.02.038$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Brualdi, Richard A.</creatorcontrib><creatorcontrib>Dahl, Geir</creatorcontrib><title>Convex (0,1)-matrices and their epitopes</title><title>Discrete Applied Mathematics</title><description>We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).</description><subject>Convexity</subject><subject>Essential set</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Permutation matrix</subject><subject>Permutations</subject><subject>Polyomino</subject><subject>Zero-one matrix</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8FLyvYOjNtky6eZPELFrwoeAtpOsUUt61JV_Tfm2U9exqGeZ-Z4RHiHCFDQHndZY3ZZASEGVAGeXUgZlgpSqVSeChmMSNTwurtWJyE0AEAxm4mFquh_-LvZAFXeJluzOSd5ZCYvkmmd3Y-4dFNw8jhVBy15iPw2V-di9f7u5fVY7p-fnha3a5TS0pNKcoGcwlLqOvC1NRwS6aySLVEKpZoJZdcqmWbxzG1LVk2tcIGK-DcqLLM5-Jiv3f0w-eWw6S7Yev7eFJTmReywAplTOE-Zf0QgudWj95tjP_RCHonRHc6CtE7IRpIRyGRudkzHN__cux1sI57y43zbCfdDO4f-heopGYD</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Brualdi, Richard A.</creator><creator>Dahl, Geir</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7481-6382</orcidid></search><sort><creationdate>20210715</creationdate><title>Convex (0,1)-matrices and their epitopes</title><author>Brualdi, Richard A. ; Dahl, Geir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-16d136090bb4ab2def2a8c12b612491c6e5e579f3b4a2ff2ceab71d180e3a7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convexity</topic><topic>Essential set</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Permutation matrix</topic><topic>Permutations</topic><topic>Polyomino</topic><topic>Zero-one matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brualdi, Richard A.</creatorcontrib><creatorcontrib>Dahl, Geir</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brualdi, Richard A.</au><au>Dahl, Geir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex (0,1)-matrices and their epitopes</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>297</volume><spage>21</spage><epage>34</epage><pages>21-34</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2021.02.038</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7481-6382</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2021-07, Vol.297, p.21-34 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2534641816 |
source | Access via ScienceDirect (Elsevier) |
subjects | Convexity Essential set Mathematical analysis Matrix methods Permutation matrix Permutations Polyomino Zero-one matrix |
title | Convex (0,1)-matrices and their epitopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20(0,1)-matrices%20and%20their%20epitopes&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Brualdi,%20Richard%20A.&rft.date=2021-07-15&rft.volume=297&rft.spage=21&rft.epage=34&rft.pages=21-34&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2021.02.038&rft_dat=%3Cproquest_cross%3E2534641816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534641816&rft_id=info:pmid/&rft_els_id=S0166218X21000937&rfr_iscdi=true |