Convex (0,1)-matrices and their epitopes

We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-07, Vol.297, p.21-34
Hauptverfasser: Brualdi, Richard A., Dahl, Geir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 21
container_title Discrete Applied Mathematics
container_volume 297
creator Brualdi, Richard A.
Dahl, Geir
description We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).
doi_str_mv 10.1016/j.dam.2021.02.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534641816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X21000937</els_id><sourcerecordid>2534641816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-16d136090bb4ab2def2a8c12b612491c6e5e579f3b4a2ff2ceab71d180e3a7553</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8FLyvYOjNtky6eZPELFrwoeAtpOsUUt61JV_Tfm2U9exqGeZ-Z4RHiHCFDQHndZY3ZZASEGVAGeXUgZlgpSqVSeChmMSNTwurtWJyE0AEAxm4mFquh_-LvZAFXeJluzOSd5ZCYvkmmd3Y-4dFNw8jhVBy15iPw2V-di9f7u5fVY7p-fnha3a5TS0pNKcoGcwlLqOvC1NRwS6aySLVEKpZoJZdcqmWbxzG1LVk2tcIGK-DcqLLM5-Jiv3f0w-eWw6S7Yev7eFJTmReywAplTOE-Zf0QgudWj95tjP_RCHonRHc6CtE7IRpIRyGRudkzHN__cux1sI57y43zbCfdDO4f-heopGYD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534641816</pqid></control><display><type>article</type><title>Convex (0,1)-matrices and their epitopes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Brualdi, Richard A. ; Dahl, Geir</creator><creatorcontrib>Brualdi, Richard A. ; Dahl, Geir</creatorcontrib><description>We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2021.02.038</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Convexity ; Essential set ; Mathematical analysis ; Matrix methods ; Permutation matrix ; Permutations ; Polyomino ; Zero-one matrix</subject><ispartof>Discrete Applied Mathematics, 2021-07, Vol.297, p.21-34</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-16d136090bb4ab2def2a8c12b612491c6e5e579f3b4a2ff2ceab71d180e3a7553</cites><orcidid>0000-0002-7481-6382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2021.02.038$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Brualdi, Richard A.</creatorcontrib><creatorcontrib>Dahl, Geir</creatorcontrib><title>Convex (0,1)-matrices and their epitopes</title><title>Discrete Applied Mathematics</title><description>We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).</description><subject>Convexity</subject><subject>Essential set</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Permutation matrix</subject><subject>Permutations</subject><subject>Polyomino</subject><subject>Zero-one matrix</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8FLyvYOjNtky6eZPELFrwoeAtpOsUUt61JV_Tfm2U9exqGeZ-Z4RHiHCFDQHndZY3ZZASEGVAGeXUgZlgpSqVSeChmMSNTwurtWJyE0AEAxm4mFquh_-LvZAFXeJluzOSd5ZCYvkmmd3Y-4dFNw8jhVBy15iPw2V-di9f7u5fVY7p-fnha3a5TS0pNKcoGcwlLqOvC1NRwS6aySLVEKpZoJZdcqmWbxzG1LVk2tcIGK-DcqLLM5-Jiv3f0w-eWw6S7Yev7eFJTmReywAplTOE-Zf0QgudWj95tjP_RCHonRHc6CtE7IRpIRyGRudkzHN__cux1sI57y43zbCfdDO4f-heopGYD</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Brualdi, Richard A.</creator><creator>Dahl, Geir</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7481-6382</orcidid></search><sort><creationdate>20210715</creationdate><title>Convex (0,1)-matrices and their epitopes</title><author>Brualdi, Richard A. ; Dahl, Geir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-16d136090bb4ab2def2a8c12b612491c6e5e579f3b4a2ff2ceab71d180e3a7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convexity</topic><topic>Essential set</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Permutation matrix</topic><topic>Permutations</topic><topic>Polyomino</topic><topic>Zero-one matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brualdi, Richard A.</creatorcontrib><creatorcontrib>Dahl, Geir</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brualdi, Richard A.</au><au>Dahl, Geir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex (0,1)-matrices and their epitopes</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>297</volume><spage>21</spage><epage>34</epage><pages>21-34</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We investigate (0,1)-matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to convex sets. We show a number of results for the class C(R,S) of convex matrices with given row and column sum vectors R and S. Also, it is shown that the ranked essential set uniquely determines a matrix in C(R,S).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2021.02.038</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7481-6382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2021-07, Vol.297, p.21-34
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2534641816
source Access via ScienceDirect (Elsevier)
subjects Convexity
Essential set
Mathematical analysis
Matrix methods
Permutation matrix
Permutations
Polyomino
Zero-one matrix
title Convex (0,1)-matrices and their epitopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20(0,1)-matrices%20and%20their%20epitopes&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Brualdi,%20Richard%20A.&rft.date=2021-07-15&rft.volume=297&rft.spage=21&rft.epage=34&rft.pages=21-34&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2021.02.038&rft_dat=%3Cproquest_cross%3E2534641816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534641816&rft_id=info:pmid/&rft_els_id=S0166218X21000937&rfr_iscdi=true