Reinforcement learning for human-robot shared control

Purpose This paper aims to propose a general framework of shared control for human–robot interaction. Design/methodology/approach Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assembly automation 2020-02, Vol.40 (1), p.105-117
Hauptverfasser: Li, Yanan, Tee, Keng Peng, Yan, Rui, Ge, Shuzhi Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 105
container_title Assembly automation
container_volume 40
creator Li, Yanan
Tee, Keng Peng
Yan, Rui
Ge, Shuzhi Sam
description Purpose This paper aims to propose a general framework of shared control for human–robot interaction. Design/methodology/approach Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof. Findings Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations. Originality/value Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.
doi_str_mv 10.1108/AA-10-2018-0153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534625503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534625503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a279aa3fa645792e11c8b0e43bb4a477f634ec199cbdda1f6869010a508ac45f3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKtnrwue087kYzd7XIpaoSCInkM2m9iWbVKT7cF_7y71IniaYXifGeYh5B5hgQhq2TQUgTJARQElvyAzrKSiAip1SWaAQlCJUlyTm5z3ACPD2IzIN7cLPibrDi4MRe9MCrvwWYyjYns6mEBTbONQ5K1JritsDEOK_S258qbP7u63zsnH0-P7ak03r88vq2ZDLRf1QA2ramO4N6WQVc0colUtOMHbVhhRVb7kwlmsa9t2nUFfqrIGBCNBGSuk53PycN57TPHr5PKg9_GUwnhSM8lFyaQEPqaW55RNMefkvD6m3cGkb42gJze6aaZ2cqMnNyOxOBPj18n03T_AH5n8B3KGY2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534625503</pqid></control><display><type>article</type><title>Reinforcement learning for human-robot shared control</title><source>Emerald Journals</source><creator>Li, Yanan ; Tee, Keng Peng ; Yan, Rui ; Ge, Shuzhi Sam</creator><creatorcontrib>Li, Yanan ; Tee, Keng Peng ; Yan, Rui ; Ge, Shuzhi Sam</creatorcontrib><description>Purpose This paper aims to propose a general framework of shared control for human–robot interaction. Design/methodology/approach Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof. Findings Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations. Originality/value Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.</description><identifier>ISSN: 0144-5154</identifier><identifier>ISSN: 2754-6969</identifier><identifier>EISSN: 1758-4078</identifier><identifier>EISSN: 2754-6977</identifier><identifier>DOI: 10.1108/AA-10-2018-0153</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Feedback control ; Human motion ; Human performance ; Kinematics ; Learning ; Performance evaluation ; Robot control ; Robot dynamics ; Robots</subject><ispartof>Assembly automation, 2020-02, Vol.40 (1), p.105-117</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a279aa3fa645792e11c8b0e43bb4a477f634ec199cbdda1f6869010a508ac45f3</citedby><cites>FETCH-LOGICAL-c349t-a279aa3fa645792e11c8b0e43bb4a477f634ec199cbdda1f6869010a508ac45f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/AA-10-2018-0153/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52688</link.rule.ids></links><search><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Tee, Keng Peng</creatorcontrib><creatorcontrib>Yan, Rui</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><title>Reinforcement learning for human-robot shared control</title><title>Assembly automation</title><description>Purpose This paper aims to propose a general framework of shared control for human–robot interaction. Design/methodology/approach Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof. Findings Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations. Originality/value Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.</description><subject>Feedback control</subject><subject>Human motion</subject><subject>Human performance</subject><subject>Kinematics</subject><subject>Learning</subject><subject>Performance evaluation</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><issn>0144-5154</issn><issn>2754-6969</issn><issn>1758-4078</issn><issn>2754-6977</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1LAzEQhoMoWKtnrwue087kYzd7XIpaoSCInkM2m9iWbVKT7cF_7y71IniaYXifGeYh5B5hgQhq2TQUgTJARQElvyAzrKSiAip1SWaAQlCJUlyTm5z3ACPD2IzIN7cLPibrDi4MRe9MCrvwWYyjYns6mEBTbONQ5K1JritsDEOK_S258qbP7u63zsnH0-P7ak03r88vq2ZDLRf1QA2ramO4N6WQVc0colUtOMHbVhhRVb7kwlmsa9t2nUFfqrIGBCNBGSuk53PycN57TPHr5PKg9_GUwnhSM8lFyaQEPqaW55RNMefkvD6m3cGkb42gJze6aaZ2cqMnNyOxOBPj18n03T_AH5n8B3KGY2g</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Li, Yanan</creator><creator>Tee, Keng Peng</creator><creator>Yan, Rui</creator><creator>Ge, Shuzhi Sam</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200218</creationdate><title>Reinforcement learning for human-robot shared control</title><author>Li, Yanan ; Tee, Keng Peng ; Yan, Rui ; Ge, Shuzhi Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a279aa3fa645792e11c8b0e43bb4a477f634ec199cbdda1f6869010a508ac45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Feedback control</topic><topic>Human motion</topic><topic>Human performance</topic><topic>Kinematics</topic><topic>Learning</topic><topic>Performance evaluation</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Tee, Keng Peng</creatorcontrib><creatorcontrib>Yan, Rui</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Assembly automation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanan</au><au>Tee, Keng Peng</au><au>Yan, Rui</au><au>Ge, Shuzhi Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement learning for human-robot shared control</atitle><jtitle>Assembly automation</jtitle><date>2020-02-18</date><risdate>2020</risdate><volume>40</volume><issue>1</issue><spage>105</spage><epage>117</epage><pages>105-117</pages><issn>0144-5154</issn><issn>2754-6969</issn><eissn>1758-4078</eissn><eissn>2754-6977</eissn><abstract>Purpose This paper aims to propose a general framework of shared control for human–robot interaction. Design/methodology/approach Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof. Findings Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations. Originality/value Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AA-10-2018-0153</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-5154
ispartof Assembly automation, 2020-02, Vol.40 (1), p.105-117
issn 0144-5154
2754-6969
1758-4078
2754-6977
language eng
recordid cdi_proquest_journals_2534625503
source Emerald Journals
subjects Feedback control
Human motion
Human performance
Kinematics
Learning
Performance evaluation
Robot control
Robot dynamics
Robots
title Reinforcement learning for human-robot shared control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20learning%20for%20human-robot%20shared%20control&rft.jtitle=Assembly%20automation&rft.au=Li,%20Yanan&rft.date=2020-02-18&rft.volume=40&rft.issue=1&rft.spage=105&rft.epage=117&rft.pages=105-117&rft.issn=0144-5154&rft.eissn=1758-4078&rft_id=info:doi/10.1108/AA-10-2018-0153&rft_dat=%3Cproquest_cross%3E2534625503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534625503&rft_id=info:pmid/&rfr_iscdi=true