Pairing by a Dynamical Interaction in a Metal

We consider pairing of itinerant fermions in a metal near a quantum-critical point (QCP) towards some form of particle-hole order (nematic, spin-density-wave, charge-density-wave, etc.). At a QCP, the dominant interaction between fermions comes from exchanging massless fluctuations of a critical ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2021-04, Vol.132 (4), p.606-617
Hauptverfasser: Chubukov, A. V., Abanov, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 4
container_start_page 606
container_title Journal of experimental and theoretical physics
container_volume 132
creator Chubukov, A. V.
Abanov, A.
description We consider pairing of itinerant fermions in a metal near a quantum-critical point (QCP) towards some form of particle-hole order (nematic, spin-density-wave, charge-density-wave, etc.). At a QCP, the dominant interaction between fermions comes from exchanging massless fluctuations of a critical order parameter. At low energies, this physics can be described by an effective model with the dynamical electron-electron interaction V (Ω m ) ∝ 1/|Ω m | γ , up to some upper cutoff Λ. The case γ = 0 corresponds to BCS theory, and can be solved by summing up geometric series of Cooper logarithms. We show that for a finite γ, the pairing problem is still marginal (i.e., perturbation series are logarithmic), but one needs to go beyond logarithmic approximation to find the pairing instability. We discuss specifics of the pairing at γ > 0 in some detail and also analyze the marginal case γ = 0+, when V (Ω m ) = λlog(Λ/|Ω m |). We show that in this case the summation of Cooper logarithms does yield the pairing instability at λlog 2 (Λ/ T c ) = O (1), but the logarithmic series are not geometrical. We reformulate the pairing problem in terms of a renormalization group (RG) flow of the coupling, and show that the RG equation is different in the cases γ = 0, γ = 0+, and γ > 0.
doi_str_mv 10.1134/S1063776121040051
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2534623160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666290215</galeid><sourcerecordid>A666290215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-483b92adec7b7c15d567a5e496151dff1f9cf333fda7d7b74a773941be5bc0823</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCJw9bM8km2xxL_VdQFKvnkM0mJWWbrckW7Lc3ywpSRHKYkPm9yZuH0CXgCQAtbpaAOS1LDgRwgTGDIzQCLHDOGRbH_Z3TvO-forMY1xjjKcFihPJX5YLzq6zaZyq73Xu1cVo12cJ3JijdudZnzqfWs-lUc45OrGqiufipY_Rxf_c-f8yfXh4W89lTrulUdHkxpZUgqja6rEoNrGa8VMwUggOD2lqwQltKqa1VWSekUGVJRQGVYZVOxugYXQ1zt6H93JnYyXW7Cz59KQmjBScUOE7UZKBWqjHSedt2yXI6tUlLtN5Yl95nnHMiMAGWBNcHgsR05qtbqV2McrF8O2RhYHVoYwzGym1wGxX2ErDsI5d_Ik8aMmjits_UhF_b_4u-Aax3fts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534623160</pqid></control><display><type>article</type><title>Pairing by a Dynamical Interaction in a Metal</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chubukov, A. V. ; Abanov, A.</creator><creatorcontrib>Chubukov, A. V. ; Abanov, A.</creatorcontrib><description>We consider pairing of itinerant fermions in a metal near a quantum-critical point (QCP) towards some form of particle-hole order (nematic, spin-density-wave, charge-density-wave, etc.). At a QCP, the dominant interaction between fermions comes from exchanging massless fluctuations of a critical order parameter. At low energies, this physics can be described by an effective model with the dynamical electron-electron interaction V (Ω m ) ∝ 1/|Ω m | γ , up to some upper cutoff Λ. The case γ = 0 corresponds to BCS theory, and can be solved by summing up geometric series of Cooper logarithms. We show that for a finite γ, the pairing problem is still marginal (i.e., perturbation series are logarithmic), but one needs to go beyond logarithmic approximation to find the pairing instability. We discuss specifics of the pairing at γ &gt; 0 in some detail and also analyze the marginal case γ = 0+, when V (Ω m ) = λlog(Λ/|Ω m |). We show that in this case the summation of Cooper logarithms does yield the pairing instability at λlog 2 (Λ/ T c ) = O (1), but the logarithmic series are not geometrical. We reformulate the pairing problem in terms of a renormalization group (RG) flow of the coupling, and show that the RG equation is different in the cases γ = 0, γ = 0+, and γ &gt; 0.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776121040051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; BCS theory ; Charge density waves ; Classical and Quantum Gravitation ; Critical point ; Electron-electron interactions ; Elementary Particles ; Fermions ; Logarithms ; Order parameters ; Particle and Nuclear Physics ; Particle spin ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Solid State Physics ; Spin density waves</subject><ispartof>Journal of experimental and theoretical physics, 2021-04, Vol.132 (4), p.606-617</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2021, Vol. 132, No. 4, pp. 606–617. © Pleiades Publishing, Inc., 2021.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-483b92adec7b7c15d567a5e496151dff1f9cf333fda7d7b74a773941be5bc0823</citedby><cites>FETCH-LOGICAL-c389t-483b92adec7b7c15d567a5e496151dff1f9cf333fda7d7b74a773941be5bc0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776121040051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776121040051$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chubukov, A. V.</creatorcontrib><creatorcontrib>Abanov, A.</creatorcontrib><title>Pairing by a Dynamical Interaction in a Metal</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>We consider pairing of itinerant fermions in a metal near a quantum-critical point (QCP) towards some form of particle-hole order (nematic, spin-density-wave, charge-density-wave, etc.). At a QCP, the dominant interaction between fermions comes from exchanging massless fluctuations of a critical order parameter. At low energies, this physics can be described by an effective model with the dynamical electron-electron interaction V (Ω m ) ∝ 1/|Ω m | γ , up to some upper cutoff Λ. The case γ = 0 corresponds to BCS theory, and can be solved by summing up geometric series of Cooper logarithms. We show that for a finite γ, the pairing problem is still marginal (i.e., perturbation series are logarithmic), but one needs to go beyond logarithmic approximation to find the pairing instability. We discuss specifics of the pairing at γ &gt; 0 in some detail and also analyze the marginal case γ = 0+, when V (Ω m ) = λlog(Λ/|Ω m |). We show that in this case the summation of Cooper logarithms does yield the pairing instability at λlog 2 (Λ/ T c ) = O (1), but the logarithmic series are not geometrical. We reformulate the pairing problem in terms of a renormalization group (RG) flow of the coupling, and show that the RG equation is different in the cases γ = 0, γ = 0+, and γ &gt; 0.</description><subject>Analysis</subject><subject>BCS theory</subject><subject>Charge density waves</subject><subject>Classical and Quantum Gravitation</subject><subject>Critical point</subject><subject>Electron-electron interactions</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>Logarithms</subject><subject>Order parameters</subject><subject>Particle and Nuclear Physics</subject><subject>Particle spin</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Solid State Physics</subject><subject>Spin density waves</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCJw9bM8km2xxL_VdQFKvnkM0mJWWbrckW7Lc3ywpSRHKYkPm9yZuH0CXgCQAtbpaAOS1LDgRwgTGDIzQCLHDOGRbH_Z3TvO-forMY1xjjKcFihPJX5YLzq6zaZyq73Xu1cVo12cJ3JijdudZnzqfWs-lUc45OrGqiufipY_Rxf_c-f8yfXh4W89lTrulUdHkxpZUgqja6rEoNrGa8VMwUggOD2lqwQltKqa1VWSekUGVJRQGVYZVOxugYXQ1zt6H93JnYyXW7Cz59KQmjBScUOE7UZKBWqjHSedt2yXI6tUlLtN5Yl95nnHMiMAGWBNcHgsR05qtbqV2McrF8O2RhYHVoYwzGym1wGxX2ErDsI5d_Ik8aMmjits_UhF_b_4u-Aax3fts</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Chubukov, A. V.</creator><creator>Abanov, A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210401</creationdate><title>Pairing by a Dynamical Interaction in a Metal</title><author>Chubukov, A. V. ; Abanov, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-483b92adec7b7c15d567a5e496151dff1f9cf333fda7d7b74a773941be5bc0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>BCS theory</topic><topic>Charge density waves</topic><topic>Classical and Quantum Gravitation</topic><topic>Critical point</topic><topic>Electron-electron interactions</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>Logarithms</topic><topic>Order parameters</topic><topic>Particle and Nuclear Physics</topic><topic>Particle spin</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Solid State Physics</topic><topic>Spin density waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chubukov, A. V.</creatorcontrib><creatorcontrib>Abanov, A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chubukov, A. V.</au><au>Abanov, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairing by a Dynamical Interaction in a Metal</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>132</volume><issue>4</issue><spage>606</spage><epage>617</epage><pages>606-617</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>We consider pairing of itinerant fermions in a metal near a quantum-critical point (QCP) towards some form of particle-hole order (nematic, spin-density-wave, charge-density-wave, etc.). At a QCP, the dominant interaction between fermions comes from exchanging massless fluctuations of a critical order parameter. At low energies, this physics can be described by an effective model with the dynamical electron-electron interaction V (Ω m ) ∝ 1/|Ω m | γ , up to some upper cutoff Λ. The case γ = 0 corresponds to BCS theory, and can be solved by summing up geometric series of Cooper logarithms. We show that for a finite γ, the pairing problem is still marginal (i.e., perturbation series are logarithmic), but one needs to go beyond logarithmic approximation to find the pairing instability. We discuss specifics of the pairing at γ &gt; 0 in some detail and also analyze the marginal case γ = 0+, when V (Ω m ) = λlog(Λ/|Ω m |). We show that in this case the summation of Cooper logarithms does yield the pairing instability at λlog 2 (Λ/ T c ) = O (1), but the logarithmic series are not geometrical. We reformulate the pairing problem in terms of a renormalization group (RG) flow of the coupling, and show that the RG equation is different in the cases γ = 0, γ = 0+, and γ &gt; 0.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776121040051</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2021-04, Vol.132 (4), p.606-617
issn 1063-7761
1090-6509
language eng
recordid cdi_proquest_journals_2534623160
source SpringerLink Journals - AutoHoldings
subjects Analysis
BCS theory
Charge density waves
Classical and Quantum Gravitation
Critical point
Electron-electron interactions
Elementary Particles
Fermions
Logarithms
Order parameters
Particle and Nuclear Physics
Particle spin
Perturbation
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Solid State Physics
Spin density waves
title Pairing by a Dynamical Interaction in a Metal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairing%20by%20a%20Dynamical%20Interaction%20in%20a%20Metal&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Chubukov,%20A.%20V.&rft.date=2021-04-01&rft.volume=132&rft.issue=4&rft.spage=606&rft.epage=617&rft.pages=606-617&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776121040051&rft_dat=%3Cgale_proqu%3EA666290215%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534623160&rft_id=info:pmid/&rft_galeid=A666290215&rfr_iscdi=true