An Efficient Early Frame Breaking Strategy for RFID Tag Identification in Large-Scale Industrial Internet of Things
With the increase in the number of tags, an efficient approach of tag identification is becoming an urgent need in Industrial Internet of Things (IIoT). However, the identification performance of existing Aloha-based anticollision schemes is limited when the initial frame size is seriously mismatche...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2021-05, Vol.2021, p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2021 |
creator | He, Zhiyong Luo, Hanguang |
description | With the increase in the number of tags, an efficient approach of tag identification is becoming an urgent need in Industrial Internet of Things (IIoT). However, the identification performance of existing Aloha-based anticollision schemes is limited when the initial frame size is seriously mismatched with the actual tag population size. The performance will degrade further when IIoT is deployed in the error-prone channel environment. To optimize the identification performance of RFID system in an error-prone channel environment, we propose an efficient early frame breaking strategy based anticollision algorithm (EFB-ACA) with channel awareness. The EFB-ACA divides the whole tag identification process into two phases: convergence phase and identification phase. The function of convergence phase is to make the adjusted frame quickly converge to an appropriate size. The early frame breaking strategy is embedded in the convergence phase. Numerical results show that the proposed EFB-ACA algorithm outperforms the other methods on efficiency and stability in the error-prone channel. In addition, EFB-ACA algorithm also outperforms the other methods in the error-free channel. |
doi_str_mv | 10.1155/2021/4603629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534421867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534421867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6b404a225b2baa29c54c5d8668a287ce9e39389485bf03573e96a825611872433</originalsourceid><addsrcrecordid>eNp9kE9PwkAUxBujiYje_ACbeNTK_u_uERGUhMREMPHWvLbbulha3F1i-PYugbOnN4ffzMtMktwS_EiIECOKKRlxiZmk-iwZEJWJVBP9eR41FirVlPPL5Mr7NcZEEYwHiR93aFrXtrSmC2gKrt2jmYONQU_OwLftGrQMDoJp9qjuHXqfzZ_RCho0r6LBRiME23fIdmgBrjHpsoTWoHlX7XxwFtoog3GdCaiv0eorBvrr5KKG1pub0x0mH7PpavKaLt5e5pPxIi0Zy0IqC445UCoKWgBQXQpeikpJqYCqrDTaMM2U5koUNWYiY0ZLUFRIEotTztgwuTvmbl3_szM-5Ot-57r4MqeCcU6JklmkHo5U6XrvnanzrbMbcPuc4Pwwa36YNT_NGvH7Ix6rVPBr_6f_AMAYdTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534421867</pqid></control><display><type>article</type><title>An Efficient Early Frame Breaking Strategy for RFID Tag Identification in Large-Scale Industrial Internet of Things</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>He, Zhiyong ; Luo, Hanguang</creator><contributor>Jiang, Yi-Zhang ; Yi-Zhang Jiang</contributor><creatorcontrib>He, Zhiyong ; Luo, Hanguang ; Jiang, Yi-Zhang ; Yi-Zhang Jiang</creatorcontrib><description>With the increase in the number of tags, an efficient approach of tag identification is becoming an urgent need in Industrial Internet of Things (IIoT). However, the identification performance of existing Aloha-based anticollision schemes is limited when the initial frame size is seriously mismatched with the actual tag population size. The performance will degrade further when IIoT is deployed in the error-prone channel environment. To optimize the identification performance of RFID system in an error-prone channel environment, we propose an efficient early frame breaking strategy based anticollision algorithm (EFB-ACA) with channel awareness. The EFB-ACA divides the whole tag identification process into two phases: convergence phase and identification phase. The function of convergence phase is to make the adjusted frame quickly converge to an appropriate size. The early frame breaking strategy is embedded in the convergence phase. Numerical results show that the proposed EFB-ACA algorithm outperforms the other methods on efficiency and stability in the error-prone channel. In addition, EFB-ACA algorithm also outperforms the other methods in the error-free channel.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/4603629</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Communication ; Convergence ; Efficiency ; Errors ; Expected values ; Industrial applications ; Internet of Things ; Normal distribution ; Performance degradation ; Population ; Probability distribution ; Radio frequency identification ; Random variables</subject><ispartof>Scientific programming, 2021-05, Vol.2021, p.1-6</ispartof><rights>Copyright © 2021 Zhiyong He and Hanguang Luo.</rights><rights>Copyright © 2021 Zhiyong He and Hanguang Luo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6b404a225b2baa29c54c5d8668a287ce9e39389485bf03573e96a825611872433</citedby><cites>FETCH-LOGICAL-c337t-6b404a225b2baa29c54c5d8668a287ce9e39389485bf03573e96a825611872433</cites><orcidid>0000-0003-2379-9807 ; 0000-0001-6595-3281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Jiang, Yi-Zhang</contributor><contributor>Yi-Zhang Jiang</contributor><creatorcontrib>He, Zhiyong</creatorcontrib><creatorcontrib>Luo, Hanguang</creatorcontrib><title>An Efficient Early Frame Breaking Strategy for RFID Tag Identification in Large-Scale Industrial Internet of Things</title><title>Scientific programming</title><description>With the increase in the number of tags, an efficient approach of tag identification is becoming an urgent need in Industrial Internet of Things (IIoT). However, the identification performance of existing Aloha-based anticollision schemes is limited when the initial frame size is seriously mismatched with the actual tag population size. The performance will degrade further when IIoT is deployed in the error-prone channel environment. To optimize the identification performance of RFID system in an error-prone channel environment, we propose an efficient early frame breaking strategy based anticollision algorithm (EFB-ACA) with channel awareness. The EFB-ACA divides the whole tag identification process into two phases: convergence phase and identification phase. The function of convergence phase is to make the adjusted frame quickly converge to an appropriate size. The early frame breaking strategy is embedded in the convergence phase. Numerical results show that the proposed EFB-ACA algorithm outperforms the other methods on efficiency and stability in the error-prone channel. In addition, EFB-ACA algorithm also outperforms the other methods in the error-free channel.</description><subject>Algorithms</subject><subject>Communication</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Errors</subject><subject>Expected values</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Normal distribution</subject><subject>Performance degradation</subject><subject>Population</subject><subject>Probability distribution</subject><subject>Radio frequency identification</subject><subject>Random variables</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE9PwkAUxBujiYje_ACbeNTK_u_uERGUhMREMPHWvLbbulha3F1i-PYugbOnN4ffzMtMktwS_EiIECOKKRlxiZmk-iwZEJWJVBP9eR41FirVlPPL5Mr7NcZEEYwHiR93aFrXtrSmC2gKrt2jmYONQU_OwLftGrQMDoJp9qjuHXqfzZ_RCho0r6LBRiME23fIdmgBrjHpsoTWoHlX7XxwFtoog3GdCaiv0eorBvrr5KKG1pub0x0mH7PpavKaLt5e5pPxIi0Zy0IqC445UCoKWgBQXQpeikpJqYCqrDTaMM2U5koUNWYiY0ZLUFRIEotTztgwuTvmbl3_szM-5Ot-57r4MqeCcU6JklmkHo5U6XrvnanzrbMbcPuc4Pwwa36YNT_NGvH7Ix6rVPBr_6f_AMAYdTg</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>He, Zhiyong</creator><creator>Luo, Hanguang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2379-9807</orcidid><orcidid>https://orcid.org/0000-0001-6595-3281</orcidid></search><sort><creationdate>20210520</creationdate><title>An Efficient Early Frame Breaking Strategy for RFID Tag Identification in Large-Scale Industrial Internet of Things</title><author>He, Zhiyong ; Luo, Hanguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6b404a225b2baa29c54c5d8668a287ce9e39389485bf03573e96a825611872433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Communication</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Errors</topic><topic>Expected values</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Normal distribution</topic><topic>Performance degradation</topic><topic>Population</topic><topic>Probability distribution</topic><topic>Radio frequency identification</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhiyong</creatorcontrib><creatorcontrib>Luo, Hanguang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhiyong</au><au>Luo, Hanguang</au><au>Jiang, Yi-Zhang</au><au>Yi-Zhang Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Early Frame Breaking Strategy for RFID Tag Identification in Large-Scale Industrial Internet of Things</atitle><jtitle>Scientific programming</jtitle><date>2021-05-20</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>With the increase in the number of tags, an efficient approach of tag identification is becoming an urgent need in Industrial Internet of Things (IIoT). However, the identification performance of existing Aloha-based anticollision schemes is limited when the initial frame size is seriously mismatched with the actual tag population size. The performance will degrade further when IIoT is deployed in the error-prone channel environment. To optimize the identification performance of RFID system in an error-prone channel environment, we propose an efficient early frame breaking strategy based anticollision algorithm (EFB-ACA) with channel awareness. The EFB-ACA divides the whole tag identification process into two phases: convergence phase and identification phase. The function of convergence phase is to make the adjusted frame quickly converge to an appropriate size. The early frame breaking strategy is embedded in the convergence phase. Numerical results show that the proposed EFB-ACA algorithm outperforms the other methods on efficiency and stability in the error-prone channel. In addition, EFB-ACA algorithm also outperforms the other methods in the error-free channel.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/4603629</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2379-9807</orcidid><orcidid>https://orcid.org/0000-0001-6595-3281</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2021-05, Vol.2021, p.1-6 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2534421867 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Algorithms Communication Convergence Efficiency Errors Expected values Industrial applications Internet of Things Normal distribution Performance degradation Population Probability distribution Radio frequency identification Random variables |
title | An Efficient Early Frame Breaking Strategy for RFID Tag Identification in Large-Scale Industrial Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Early%20Frame%20Breaking%20Strategy%20for%20RFID%20Tag%20Identification%20in%20Large-Scale%20Industrial%20Internet%20of%20Things&rft.jtitle=Scientific%20programming&rft.au=He,%20Zhiyong&rft.date=2021-05-20&rft.volume=2021&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/4603629&rft_dat=%3Cproquest_cross%3E2534421867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534421867&rft_id=info:pmid/&rfr_iscdi=true |