The Behavior of Weighted Graph’s Orbit and Its Energy

Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new analytical phenomenon to the weighted graphs by st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-05, Vol.2021, p.1-6
Hauptverfasser: Shukur, Ali A., Jahanbani, Akbar, Shelash, Haider
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Shukur, Ali A.
Jahanbani, Akbar
Shelash, Haider
description Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new analytical phenomenon to the weighted graphs by studying the orbit of their elements. Studying the weighted graph's orbit allows us to have a better understanding to the behaviour of the systems (graphs) during determined time and environment. Moreover, the energy of the graph’s orbit is given.
doi_str_mv 10.1155/2021/9933072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534420613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534420613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2de9e620c9d8853293427febcc23646e15af6bbc7a0034c28cce56b94a69bdd03</originalsourceid><addsrcrecordid>eNp90L1OwzAQwHELgUQpbDyAJUYItc8fiUeoSqlUqUsRbJZjO00qSIKdUnXjNXg9noRU7cx0N_x0J_0RuqbknlIhRkCAjpRijKRwggZUSJYIytPTfifAEwrs7RxdxLgmvRQ0G6B0WXr86EvzVTUBNwV-9dWq7LzD02Da8vf7J-JFyKsOm9rhWRfxpPZhtbtEZ4V5j_7qOIfo5WmyHD8n88V0Nn6YJxYU7xJwXnkJxCqXZYKBYhzSwufWApNceipMIfPcpoYQxi1k1nohc8WNVLlzhA3RzeFuG5rPjY-dXjebUPcvNQjGORBJWa_uDsqGJsbgC92G6sOEnaZE79PofRp9TNPz2wMvq9qZbfW__gO97mHb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534420613</pqid></control><display><type>article</type><title>The Behavior of Weighted Graph’s Orbit and Its Energy</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Shukur, Ali A. ; Jahanbani, Akbar ; Shelash, Haider</creator><contributor>Semaničová-Feňovčíková, Andrea ; Andrea Semaničová-Feňovčíková</contributor><creatorcontrib>Shukur, Ali A. ; Jahanbani, Akbar ; Shelash, Haider ; Semaničová-Feňovčíková, Andrea ; Andrea Semaničová-Feňovčíková</creatorcontrib><description>Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new analytical phenomenon to the weighted graphs by studying the orbit of their elements. Studying the weighted graph's orbit allows us to have a better understanding to the behaviour of the systems (graphs) during determined time and environment. Moreover, the energy of the graph’s orbit is given.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/9933072</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Applications of mathematics ; Eigenvalues ; Energy ; Engineering ; Graphs</subject><ispartof>Mathematical problems in engineering, 2021-05, Vol.2021, p.1-6</ispartof><rights>Copyright © 2021 Ali A. Shukur et al.</rights><rights>Copyright © 2021 Ali A. Shukur et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-2de9e620c9d8853293427febcc23646e15af6bbc7a0034c28cce56b94a69bdd03</cites><orcidid>0000-0003-3513-9216 ; 0000-0002-2800-4420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Semaničová-Feňovčíková, Andrea</contributor><contributor>Andrea Semaničová-Feňovčíková</contributor><creatorcontrib>Shukur, Ali A.</creatorcontrib><creatorcontrib>Jahanbani, Akbar</creatorcontrib><creatorcontrib>Shelash, Haider</creatorcontrib><title>The Behavior of Weighted Graph’s Orbit and Its Energy</title><title>Mathematical problems in engineering</title><description>Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new analytical phenomenon to the weighted graphs by studying the orbit of their elements. Studying the weighted graph's orbit allows us to have a better understanding to the behaviour of the systems (graphs) during determined time and environment. Moreover, the energy of the graph’s orbit is given.</description><subject>Applications of mathematics</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>Engineering</subject><subject>Graphs</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90L1OwzAQwHELgUQpbDyAJUYItc8fiUeoSqlUqUsRbJZjO00qSIKdUnXjNXg9noRU7cx0N_x0J_0RuqbknlIhRkCAjpRijKRwggZUSJYIytPTfifAEwrs7RxdxLgmvRQ0G6B0WXr86EvzVTUBNwV-9dWq7LzD02Da8vf7J-JFyKsOm9rhWRfxpPZhtbtEZ4V5j_7qOIfo5WmyHD8n88V0Nn6YJxYU7xJwXnkJxCqXZYKBYhzSwufWApNceipMIfPcpoYQxi1k1nohc8WNVLlzhA3RzeFuG5rPjY-dXjebUPcvNQjGORBJWa_uDsqGJsbgC92G6sOEnaZE79PofRp9TNPz2wMvq9qZbfW__gO97mHb</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Shukur, Ali A.</creator><creator>Jahanbani, Akbar</creator><creator>Shelash, Haider</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3513-9216</orcidid><orcidid>https://orcid.org/0000-0002-2800-4420</orcidid></search><sort><creationdate>20210517</creationdate><title>The Behavior of Weighted Graph’s Orbit and Its Energy</title><author>Shukur, Ali A. ; Jahanbani, Akbar ; Shelash, Haider</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2de9e620c9d8853293427febcc23646e15af6bbc7a0034c28cce56b94a69bdd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of mathematics</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>Engineering</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukur, Ali A.</creatorcontrib><creatorcontrib>Jahanbani, Akbar</creatorcontrib><creatorcontrib>Shelash, Haider</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukur, Ali A.</au><au>Jahanbani, Akbar</au><au>Shelash, Haider</au><au>Semaničová-Feňovčíková, Andrea</au><au>Andrea Semaničová-Feňovčíková</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Behavior of Weighted Graph’s Orbit and Its Energy</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-05-17</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new analytical phenomenon to the weighted graphs by studying the orbit of their elements. Studying the weighted graph's orbit allows us to have a better understanding to the behaviour of the systems (graphs) during determined time and environment. Moreover, the energy of the graph’s orbit is given.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9933072</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3513-9216</orcidid><orcidid>https://orcid.org/0000-0002-2800-4420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-05, Vol.2021, p.1-6
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2534420613
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Applications of mathematics
Eigenvalues
Energy
Engineering
Graphs
title The Behavior of Weighted Graph’s Orbit and Its Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Behavior%20of%20Weighted%20Graph%E2%80%99s%20Orbit%20and%20Its%20Energy&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Shukur,%20Ali%20A.&rft.date=2021-05-17&rft.volume=2021&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/9933072&rft_dat=%3Cproquest_cross%3E2534420613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534420613&rft_id=info:pmid/&rfr_iscdi=true