On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications
A graphene-based Terahertz (THz) diversity antenna using a series-fed microstrip antenna array is reported in this paper for body-worn applications under biomedical conditions. The proposed series-fed antenna array is constructed using a quad-band radiator. Each array comprises two quad-band element...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2021-06, Vol.127 (6), Article 467 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 127 |
creator | Bokhari, B. Syed Moinuddin Bhagyaveni, M. A. Rajkumar, R. |
description | A graphene-based Terahertz (THz) diversity antenna using a series-fed microstrip antenna array is reported in this paper for body-worn applications under biomedical conditions. The proposed series-fed antenna array is constructed using a quad-band radiator. Each array comprises two quad-band elements, and two such arrays are developed to create the THz antenna array with diversity reception. The proposed diversity antenna has an overall footprint of 40 × 28 μm. The proposed array operates at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz with 10 dB reflection coefficient bandwidth of 29 GHz, 49 GHz, 55 GHz and 99 GHz, respectively. The antenna elements are spaced at a distance of 26 μm to achieve mutual coupling less than − 25 dB. The realized antenna gain is 4.5 dBi, 4.8 dBi, 5 dBi, 5.2 dBi at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz, respectively. The diversity metrics such as envelope correlation coefficient, adaptive diversity gain, effective diversity gain, mean effective gain and the cumulative distribution function are evaluated and presented. The results indicate that the proposed two-element antenna array is a suitable candidate for diversity reception in wireless body area networks operating in the THz regime. |
doi_str_mv | 10.1007/s00339-021-04616-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534277042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534277042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bed5d8993ab40a41b81a87a4b1cd22fb70c8c5896f5d862b1b24c7d94a887a403</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoWB9_wFXAdTSvzmMpRa1Q6KauQ17TprSZaZKp1F9vpiO4M5sv8J17Qw4ADwQ_EYzL54gxYzXClCDMC1IgfgEmhDOKcMHwJZjgmpeoYnVxDW5i3OJ8OKUTcFx6mDYW9tHCtoHrILuN9RY2bYCHXhqkpDdwNf-Ge6dDG1NwHZQ-We8llCHIE_xyaQONO9oQXTrBYLXtkmv9uUO5dm-N03IHZdft8mVYxTtw1chdtPe_8xZ8vr2uZnO0WL5_zF4WSDNSJ6SsmZqqrplUHEtOVEVkVUquiDaUNqrEutLTqi6ajBVUEUW5Lk3NZTVgmN2Cx7G3C-2htzGJbdsHn58UdMo4LcusIVN0pIYfxmAb0QW3l-EkCBaDXzH6FdmvOPsVPIfYGIoZ9msb_qr_Sf0AW1F_aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534277042</pqid></control><display><type>article</type><title>On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bokhari, B. Syed Moinuddin ; Bhagyaveni, M. A. ; Rajkumar, R.</creator><creatorcontrib>Bokhari, B. Syed Moinuddin ; Bhagyaveni, M. A. ; Rajkumar, R.</creatorcontrib><description>A graphene-based Terahertz (THz) diversity antenna using a series-fed microstrip antenna array is reported in this paper for body-worn applications under biomedical conditions. The proposed series-fed antenna array is constructed using a quad-band radiator. Each array comprises two quad-band elements, and two such arrays are developed to create the THz antenna array with diversity reception. The proposed diversity antenna has an overall footprint of 40 × 28 μm. The proposed array operates at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz with 10 dB reflection coefficient bandwidth of 29 GHz, 49 GHz, 55 GHz and 99 GHz, respectively. The antenna elements are spaced at a distance of 26 μm to achieve mutual coupling less than − 25 dB. The realized antenna gain is 4.5 dBi, 4.8 dBi, 5 dBi, 5.2 dBi at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz, respectively. The diversity metrics such as envelope correlation coefficient, adaptive diversity gain, effective diversity gain, mean effective gain and the cumulative distribution function are evaluated and presented. The results indicate that the proposed two-element antenna array is a suitable candidate for diversity reception in wireless body area networks operating in the THz regime.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-04616-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antenna arrays ; Antenna gain ; Antennas ; Applied physics ; Biomedical materials ; Body area networks ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Correlation coefficients ; Distribution functions ; Graphene ; Machines ; Manufacturing ; Materials science ; Microstrip antennas ; Mutual coupling ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Radiators ; Reflectance ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2021-06, Vol.127 (6), Article 467</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bed5d8993ab40a41b81a87a4b1cd22fb70c8c5896f5d862b1b24c7d94a887a403</citedby><cites>FETCH-LOGICAL-c319t-bed5d8993ab40a41b81a87a4b1cd22fb70c8c5896f5d862b1b24c7d94a887a403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-04616-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-04616-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Bokhari, B. Syed Moinuddin</creatorcontrib><creatorcontrib>Bhagyaveni, M. A.</creatorcontrib><creatorcontrib>Rajkumar, R.</creatorcontrib><title>On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>A graphene-based Terahertz (THz) diversity antenna using a series-fed microstrip antenna array is reported in this paper for body-worn applications under biomedical conditions. The proposed series-fed antenna array is constructed using a quad-band radiator. Each array comprises two quad-band elements, and two such arrays are developed to create the THz antenna array with diversity reception. The proposed diversity antenna has an overall footprint of 40 × 28 μm. The proposed array operates at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz with 10 dB reflection coefficient bandwidth of 29 GHz, 49 GHz, 55 GHz and 99 GHz, respectively. The antenna elements are spaced at a distance of 26 μm to achieve mutual coupling less than − 25 dB. The realized antenna gain is 4.5 dBi, 4.8 dBi, 5 dBi, 5.2 dBi at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz, respectively. The diversity metrics such as envelope correlation coefficient, adaptive diversity gain, effective diversity gain, mean effective gain and the cumulative distribution function are evaluated and presented. The results indicate that the proposed two-element antenna array is a suitable candidate for diversity reception in wireless body area networks operating in the THz regime.</description><subject>Antenna arrays</subject><subject>Antenna gain</subject><subject>Antennas</subject><subject>Applied physics</subject><subject>Biomedical materials</subject><subject>Body area networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Correlation coefficients</subject><subject>Distribution functions</subject><subject>Graphene</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microstrip antennas</subject><subject>Mutual coupling</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Radiators</subject><subject>Reflectance</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEYRYMoWB9_wFXAdTSvzmMpRa1Q6KauQ17TprSZaZKp1F9vpiO4M5sv8J17Qw4ADwQ_EYzL54gxYzXClCDMC1IgfgEmhDOKcMHwJZjgmpeoYnVxDW5i3OJ8OKUTcFx6mDYW9tHCtoHrILuN9RY2bYCHXhqkpDdwNf-Ge6dDG1NwHZQ-We8llCHIE_xyaQONO9oQXTrBYLXtkmv9uUO5dm-N03IHZdft8mVYxTtw1chdtPe_8xZ8vr2uZnO0WL5_zF4WSDNSJ6SsmZqqrplUHEtOVEVkVUquiDaUNqrEutLTqi6ajBVUEUW5Lk3NZTVgmN2Cx7G3C-2htzGJbdsHn58UdMo4LcusIVN0pIYfxmAb0QW3l-EkCBaDXzH6FdmvOPsVPIfYGIoZ9msb_qr_Sf0AW1F_aQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bokhari, B. Syed Moinuddin</creator><creator>Bhagyaveni, M. A.</creator><creator>Rajkumar, R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications</title><author>Bokhari, B. Syed Moinuddin ; Bhagyaveni, M. A. ; Rajkumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bed5d8993ab40a41b81a87a4b1cd22fb70c8c5896f5d862b1b24c7d94a887a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antenna arrays</topic><topic>Antenna gain</topic><topic>Antennas</topic><topic>Applied physics</topic><topic>Biomedical materials</topic><topic>Body area networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Correlation coefficients</topic><topic>Distribution functions</topic><topic>Graphene</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microstrip antennas</topic><topic>Mutual coupling</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Radiators</topic><topic>Reflectance</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokhari, B. Syed Moinuddin</creatorcontrib><creatorcontrib>Bhagyaveni, M. A.</creatorcontrib><creatorcontrib>Rajkumar, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokhari, B. Syed Moinuddin</au><au>Bhagyaveni, M. A.</au><au>Rajkumar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>127</volume><issue>6</issue><artnum>467</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A graphene-based Terahertz (THz) diversity antenna using a series-fed microstrip antenna array is reported in this paper for body-worn applications under biomedical conditions. The proposed series-fed antenna array is constructed using a quad-band radiator. Each array comprises two quad-band elements, and two such arrays are developed to create the THz antenna array with diversity reception. The proposed diversity antenna has an overall footprint of 40 × 28 μm. The proposed array operates at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz with 10 dB reflection coefficient bandwidth of 29 GHz, 49 GHz, 55 GHz and 99 GHz, respectively. The antenna elements are spaced at a distance of 26 μm to achieve mutual coupling less than − 25 dB. The realized antenna gain is 4.5 dBi, 4.8 dBi, 5 dBi, 5.2 dBi at 1.57 THz, 2.08 THz, 3.32 THz and 4.43 THz, respectively. The diversity metrics such as envelope correlation coefficient, adaptive diversity gain, effective diversity gain, mean effective gain and the cumulative distribution function are evaluated and presented. The results indicate that the proposed two-element antenna array is a suitable candidate for diversity reception in wireless body area networks operating in the THz regime.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-04616-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2021-06, Vol.127 (6), Article 467 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2534277042 |
source | SpringerLink Journals - AutoHoldings |
subjects | Antenna arrays Antenna gain Antennas Applied physics Biomedical materials Body area networks Characterization and Evaluation of Materials Condensed Matter Physics Correlation coefficients Distribution functions Graphene Machines Manufacturing Materials science Microstrip antennas Mutual coupling Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Radiators Reflectance Surfaces and Interfaces Thin Films |
title | On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20use%20of%20graphene%20for%20quad-band%20THz%20microstrip%20antenna%20array%20with%20diversity%20reception%20for%20biomedical%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Bokhari,%20B.%20Syed%20Moinuddin&rft.date=2021-06-01&rft.volume=127&rft.issue=6&rft.artnum=467&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-04616-4&rft_dat=%3Cproquest_cross%3E2534277042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534277042&rft_id=info:pmid/&rfr_iscdi=true |