Factors influencing people’s continuous watching intention and consumption intention in live streaming: Evidence from China

PurposeThe purpose of this paper is to investigate what factors can affect people’s continuous watching and consumption intentions in live streaming.Design/methodology/approachThis research conducted a mixed-methods study. The semi-structured interview was deployed to develop a research model and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Internet research 2020-02, Vol.30 (1), p.141-163
Hauptverfasser: Hou, Fangfang, Guan, Zhengzhi, Li, Boying, Chong, Alain Yee Loong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 141
container_title Internet research
container_volume 30
creator Hou, Fangfang
Guan, Zhengzhi
Li, Boying
Chong, Alain Yee Loong
description PurposeThe purpose of this paper is to investigate what factors can affect people’s continuous watching and consumption intentions in live streaming.Design/methodology/approachThis research conducted a mixed-methods study. The semi-structured interview was deployed to develop a research model and a live streaming typology. A survey was then used for quantitative assessment of the research model. Survey data were analyzed using partial least squares-structural equation modeling.FindingsThe results suggest that sex and humor appeals, social status display and interactivity play considerable roles in the viewer’s behavioral intentions in live streaming and their effects vary across different live streaming types.Research limitations/implicationsThis research is conducted in the Chinese context. Future research can test the research model in other cultural contexts. This study can also be extended by incorporating the roles of viewer gender and price sensitivity in the future.Practical implicationsThis study provides managerial insights into how live streaming platforms and streamers can improve their popularity and profitability.Originality/valueThe paper introduces a novel form of social media and a new business model. It illustrates what will affect people’s behavioral intentions in such a new context.
doi_str_mv 10.1108/INTR-04-2018-0177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533926695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533926695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-2bd563fbea01600d5ab0f663df3e533bc7bb1d01ccc46c0c903945d159b2d8863</originalsourceid><addsrcrecordid>eNpFkM1KxDAUhYMoOI4-gLuC6-jNb9ulDI4ODAoyrkOapE6HTlKTVnHna_h6PomtCq4u955zz4EPoXMCl4RAcbW63zxi4JgCKTCQPD9AMwqCYyFFfohmBKTElHJ2jE5S2gEAKUs-Q9ulNn2IKWt83Q7Om8Y_Z50LXeu-Pj5TZoLvGz-EIWVvujfbSW5878Zr8Jn2dnKkYd_97P9K47O2eXVZ6qPT-_HrFB3Vuk3u7G_O0dPyZrO4w-uH29Xieo0NzVmPaWWFZHXlNBAJYIWuoJaS2Zo5wVhl8qoiFogxhksDpgRWcmGJKCtqi0KyObr4ze1ieBlc6tUuDNGPlYqOASWVshSji_y6TAwpRVerLjZ7Hd8VATUBVRNQBVxNQNUElH0DQm9suw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533926695</pqid></control><display><type>article</type><title>Factors influencing people’s continuous watching intention and consumption intention in live streaming: Evidence from China</title><source>Emerald Journals</source><creator>Hou, Fangfang ; Guan, Zhengzhi ; Li, Boying ; Chong, Alain Yee Loong</creator><creatorcontrib>Hou, Fangfang ; Guan, Zhengzhi ; Li, Boying ; Chong, Alain Yee Loong</creatorcontrib><description>PurposeThe purpose of this paper is to investigate what factors can affect people’s continuous watching and consumption intentions in live streaming.Design/methodology/approachThis research conducted a mixed-methods study. The semi-structured interview was deployed to develop a research model and a live streaming typology. A survey was then used for quantitative assessment of the research model. Survey data were analyzed using partial least squares-structural equation modeling.FindingsThe results suggest that sex and humor appeals, social status display and interactivity play considerable roles in the viewer’s behavioral intentions in live streaming and their effects vary across different live streaming types.Research limitations/implicationsThis research is conducted in the Chinese context. Future research can test the research model in other cultural contexts. This study can also be extended by incorporating the roles of viewer gender and price sensitivity in the future.Practical implicationsThis study provides managerial insights into how live streaming platforms and streamers can improve their popularity and profitability.Originality/valueThe paper introduces a novel form of social media and a new business model. It illustrates what will affect people’s behavioral intentions in such a new context.</description><identifier>ISSN: 1066-2243</identifier><identifier>EISSN: 2054-5657</identifier><identifier>DOI: 10.1108/INTR-04-2018-0177</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Behavior ; Communication ; Communication (Thought Transfer) ; Consumption ; Context ; Digital media ; Intention ; Internet ; Interpersonal Relationship ; Interviews ; Least Squares Statistics ; Methods Research ; Mixed methods research ; Model testing ; Multivariate statistical analysis ; Profitability ; Psychological Needs ; Research design ; Self Actualization ; Semi Structured Interviews ; Social integration ; Social interaction ; Social Media ; Social networks ; Social Status ; Streaming media ; Structural Equation Models ; Video Games</subject><ispartof>Internet research, 2020-02, Vol.30 (1), p.141-163</ispartof><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-2bd563fbea01600d5ab0f663df3e533bc7bb1d01ccc46c0c903945d159b2d8863</citedby><cites>FETCH-LOGICAL-c273t-2bd563fbea01600d5ab0f663df3e533bc7bb1d01ccc46c0c903945d159b2d8863</cites><orcidid>0000-0001-9647-6166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,961,27901,27902</link.rule.ids></links><search><creatorcontrib>Hou, Fangfang</creatorcontrib><creatorcontrib>Guan, Zhengzhi</creatorcontrib><creatorcontrib>Li, Boying</creatorcontrib><creatorcontrib>Chong, Alain Yee Loong</creatorcontrib><title>Factors influencing people’s continuous watching intention and consumption intention in live streaming: Evidence from China</title><title>Internet research</title><description>PurposeThe purpose of this paper is to investigate what factors can affect people’s continuous watching and consumption intentions in live streaming.Design/methodology/approachThis research conducted a mixed-methods study. The semi-structured interview was deployed to develop a research model and a live streaming typology. A survey was then used for quantitative assessment of the research model. Survey data were analyzed using partial least squares-structural equation modeling.FindingsThe results suggest that sex and humor appeals, social status display and interactivity play considerable roles in the viewer’s behavioral intentions in live streaming and their effects vary across different live streaming types.Research limitations/implicationsThis research is conducted in the Chinese context. Future research can test the research model in other cultural contexts. This study can also be extended by incorporating the roles of viewer gender and price sensitivity in the future.Practical implicationsThis study provides managerial insights into how live streaming platforms and streamers can improve their popularity and profitability.Originality/valueThe paper introduces a novel form of social media and a new business model. It illustrates what will affect people’s behavioral intentions in such a new context.</description><subject>Behavior</subject><subject>Communication</subject><subject>Communication (Thought Transfer)</subject><subject>Consumption</subject><subject>Context</subject><subject>Digital media</subject><subject>Intention</subject><subject>Internet</subject><subject>Interpersonal Relationship</subject><subject>Interviews</subject><subject>Least Squares Statistics</subject><subject>Methods Research</subject><subject>Mixed methods research</subject><subject>Model testing</subject><subject>Multivariate statistical analysis</subject><subject>Profitability</subject><subject>Psychological Needs</subject><subject>Research design</subject><subject>Self Actualization</subject><subject>Semi Structured Interviews</subject><subject>Social integration</subject><subject>Social interaction</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Social Status</subject><subject>Streaming media</subject><subject>Structural Equation Models</subject><subject>Video Games</subject><issn>1066-2243</issn><issn>2054-5657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1KxDAUhYMoOI4-gLuC6-jNb9ulDI4ODAoyrkOapE6HTlKTVnHna_h6PomtCq4u955zz4EPoXMCl4RAcbW63zxi4JgCKTCQPD9AMwqCYyFFfohmBKTElHJ2jE5S2gEAKUs-Q9ulNn2IKWt83Q7Om8Y_Z50LXeu-Pj5TZoLvGz-EIWVvujfbSW5878Zr8Jn2dnKkYd_97P9K47O2eXVZ6qPT-_HrFB3Vuk3u7G_O0dPyZrO4w-uH29Xieo0NzVmPaWWFZHXlNBAJYIWuoJaS2Zo5wVhl8qoiFogxhksDpgRWcmGJKCtqi0KyObr4ze1ieBlc6tUuDNGPlYqOASWVshSji_y6TAwpRVerLjZ7Hd8VATUBVRNQBVxNQNUElH0DQm9suw</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Hou, Fangfang</creator><creator>Guan, Zhengzhi</creator><creator>Li, Boying</creator><creator>Chong, Alain Yee Loong</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0P</scope><scope>M1O</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9647-6166</orcidid></search><sort><creationdate>20200203</creationdate><title>Factors influencing people’s continuous watching intention and consumption intention in live streaming</title><author>Hou, Fangfang ; Guan, Zhengzhi ; Li, Boying ; Chong, Alain Yee Loong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-2bd563fbea01600d5ab0f663df3e533bc7bb1d01ccc46c0c903945d159b2d8863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Behavior</topic><topic>Communication</topic><topic>Communication (Thought Transfer)</topic><topic>Consumption</topic><topic>Context</topic><topic>Digital media</topic><topic>Intention</topic><topic>Internet</topic><topic>Interpersonal Relationship</topic><topic>Interviews</topic><topic>Least Squares Statistics</topic><topic>Methods Research</topic><topic>Mixed methods research</topic><topic>Model testing</topic><topic>Multivariate statistical analysis</topic><topic>Profitability</topic><topic>Psychological Needs</topic><topic>Research design</topic><topic>Self Actualization</topic><topic>Semi Structured Interviews</topic><topic>Social integration</topic><topic>Social interaction</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Social Status</topic><topic>Streaming media</topic><topic>Structural Equation Models</topic><topic>Video Games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Fangfang</creatorcontrib><creatorcontrib>Guan, Zhengzhi</creatorcontrib><creatorcontrib>Li, Boying</creatorcontrib><creatorcontrib>Chong, Alain Yee Loong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Education Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Internet research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Fangfang</au><au>Guan, Zhengzhi</au><au>Li, Boying</au><au>Chong, Alain Yee Loong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors influencing people’s continuous watching intention and consumption intention in live streaming: Evidence from China</atitle><jtitle>Internet research</jtitle><date>2020-02-03</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>141</spage><epage>163</epage><pages>141-163</pages><issn>1066-2243</issn><eissn>2054-5657</eissn><abstract>PurposeThe purpose of this paper is to investigate what factors can affect people’s continuous watching and consumption intentions in live streaming.Design/methodology/approachThis research conducted a mixed-methods study. The semi-structured interview was deployed to develop a research model and a live streaming typology. A survey was then used for quantitative assessment of the research model. Survey data were analyzed using partial least squares-structural equation modeling.FindingsThe results suggest that sex and humor appeals, social status display and interactivity play considerable roles in the viewer’s behavioral intentions in live streaming and their effects vary across different live streaming types.Research limitations/implicationsThis research is conducted in the Chinese context. Future research can test the research model in other cultural contexts. This study can also be extended by incorporating the roles of viewer gender and price sensitivity in the future.Practical implicationsThis study provides managerial insights into how live streaming platforms and streamers can improve their popularity and profitability.Originality/valueThe paper introduces a novel form of social media and a new business model. It illustrates what will affect people’s behavioral intentions in such a new context.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/INTR-04-2018-0177</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9647-6166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1066-2243
ispartof Internet research, 2020-02, Vol.30 (1), p.141-163
issn 1066-2243
2054-5657
language eng
recordid cdi_proquest_journals_2533926695
source Emerald Journals
subjects Behavior
Communication
Communication (Thought Transfer)
Consumption
Context
Digital media
Intention
Internet
Interpersonal Relationship
Interviews
Least Squares Statistics
Methods Research
Mixed methods research
Model testing
Multivariate statistical analysis
Profitability
Psychological Needs
Research design
Self Actualization
Semi Structured Interviews
Social integration
Social interaction
Social Media
Social networks
Social Status
Streaming media
Structural Equation Models
Video Games
title Factors influencing people’s continuous watching intention and consumption intention in live streaming: Evidence from China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20influencing%20people%E2%80%99s%20continuous%20watching%20intention%20and%20consumption%20intention%20in%20live%20streaming:%20Evidence%20from%20China&rft.jtitle=Internet%20research&rft.au=Hou,%20Fangfang&rft.date=2020-02-03&rft.volume=30&rft.issue=1&rft.spage=141&rft.epage=163&rft.pages=141-163&rft.issn=1066-2243&rft.eissn=2054-5657&rft_id=info:doi/10.1108/INTR-04-2018-0177&rft_dat=%3Cproquest_cross%3E2533926695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533926695&rft_id=info:pmid/&rfr_iscdi=true