Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion
A novel model is proposed to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity of a flapping foil based on a lift–drag ratio under the assumption of negligible pitching power. The optimal efficiency increases with the lift–drag ratio. The optimal Strouhal numb...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2021-06, Vol.59 (6), p.2143-2154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2154 |
---|---|
container_issue | 6 |
container_start_page | 2143 |
container_title | AIAA journal |
container_volume | 59 |
creator | Xu, Lincheng Tian, Fang-Bao Lai, Joseph C. S Young, John |
description | A novel model is proposed to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity of a flapping foil based on a lift–drag ratio under the assumption of negligible pitching power. The optimal efficiency increases with the lift–drag ratio. The optimal Strouhal number of sinusoidal heaving motion approaches 0.318, within the range of 0.25–0.35 for optimal efficiency. In addition, the thrust generation of a foil requires that the product of the lift–drag ratio and the dimensionless heaving velocity must be greater than unity. To demonstrate how to use the new model to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity, the lift–drag ratio is estimated using static tests of an impulsively started uniform flow over an infinitely thin flat plate for a range of angle of attack. To illustrate how to design kinematics to achieve the estimated optimal efficiency, two examples of flapping motions of a flat plate at a Reynolds number of 2000 are considered: sinusoidal and nonsinusoidal. Results show that the efficiency of nonsinusoidal flapping motion approaches the optimal efficiency using the lift–drag ratio estimated from static tests over the effective angle of attack of 6–30°. |
doi_str_mv | 10.2514/1.J059866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533857481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533857481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-7c543496e9fd0d142e2b7e8f2b880cd76f2ffaf2307f143afcc9125aba9c0e203</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsHv0FAEDxszcuf3exRSmuVQj2oeAvZbCIp62ZNtkK_vVu24MHT8IYf85hB6BrIjArg9zB7JqKUeX6CJiAYy5gUH6doQgiBDLig5-gipe1w0ULCBM03Xe-_dIMXznnjbWv2WLc1Xln949tP_G6bYHy_x77Fy0Z33cFcBt_glxi6XZN8aC_RmdNNsldHnaK35eJ1vsrWm8en-cM60xRknxVGcMbL3JauJjVwamlVWOloJSUxdZE76px2lJHCAWfaGVMCFbrSpSGWEjZFN2NuF8P3zqZebcMutsNLRYeqUhRcwkDdjZSJIaVoneri0DDuFRB12EiBOm40sLcjq73Wf2n_wV-iJGQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533857481</pqid></control><display><type>article</type><title>Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion</title><source>Alma/SFX Local Collection</source><creator>Xu, Lincheng ; Tian, Fang-Bao ; Lai, Joseph C. S ; Young, John</creator><creatorcontrib>Xu, Lincheng ; Tian, Fang-Bao ; Lai, Joseph C. S ; Young, John</creatorcontrib><description>A novel model is proposed to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity of a flapping foil based on a lift–drag ratio under the assumption of negligible pitching power. The optimal efficiency increases with the lift–drag ratio. The optimal Strouhal number of sinusoidal heaving motion approaches 0.318, within the range of 0.25–0.35 for optimal efficiency. In addition, the thrust generation of a foil requires that the product of the lift–drag ratio and the dimensionless heaving velocity must be greater than unity. To demonstrate how to use the new model to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity, the lift–drag ratio is estimated using static tests of an impulsively started uniform flow over an infinitely thin flat plate for a range of angle of attack. To illustrate how to design kinematics to achieve the estimated optimal efficiency, two examples of flapping motions of a flat plate at a Reynolds number of 2000 are considered: sinusoidal and nonsinusoidal. Results show that the efficiency of nonsinusoidal flapping motion approaches the optimal efficiency using the lift–drag ratio estimated from static tests over the effective angle of attack of 6–30°.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J059866</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Angle of attack ; Computational fluid dynamics ; Drag ; Efficiency ; Flapping ; Flat plates ; Fluid flow ; Heaving ; Kinematics ; Lift ; Propulsive efficiency ; Reynolds number ; Sine waves ; Static tests ; Strouhal number ; Uniform flow ; Velocity</subject><ispartof>AIAA journal, 2021-06, Vol.59 (6), p.2143-2154</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a218t-7c543496e9fd0d142e2b7e8f2b880cd76f2ffaf2307f143afcc9125aba9c0e203</citedby><cites>FETCH-LOGICAL-a218t-7c543496e9fd0d142e2b7e8f2b880cd76f2ffaf2307f143afcc9125aba9c0e203</cites><orcidid>0000-0002-8946-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Lincheng</creatorcontrib><creatorcontrib>Tian, Fang-Bao</creatorcontrib><creatorcontrib>Lai, Joseph C. S</creatorcontrib><creatorcontrib>Young, John</creatorcontrib><title>Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion</title><title>AIAA journal</title><description>A novel model is proposed to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity of a flapping foil based on a lift–drag ratio under the assumption of negligible pitching power. The optimal efficiency increases with the lift–drag ratio. The optimal Strouhal number of sinusoidal heaving motion approaches 0.318, within the range of 0.25–0.35 for optimal efficiency. In addition, the thrust generation of a foil requires that the product of the lift–drag ratio and the dimensionless heaving velocity must be greater than unity. To demonstrate how to use the new model to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity, the lift–drag ratio is estimated using static tests of an impulsively started uniform flow over an infinitely thin flat plate for a range of angle of attack. To illustrate how to design kinematics to achieve the estimated optimal efficiency, two examples of flapping motions of a flat plate at a Reynolds number of 2000 are considered: sinusoidal and nonsinusoidal. Results show that the efficiency of nonsinusoidal flapping motion approaches the optimal efficiency using the lift–drag ratio estimated from static tests over the effective angle of attack of 6–30°.</description><subject>Angle of attack</subject><subject>Computational fluid dynamics</subject><subject>Drag</subject><subject>Efficiency</subject><subject>Flapping</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Heaving</subject><subject>Kinematics</subject><subject>Lift</subject><subject>Propulsive efficiency</subject><subject>Reynolds number</subject><subject>Sine waves</subject><subject>Static tests</subject><subject>Strouhal number</subject><subject>Uniform flow</subject><subject>Velocity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxIMoWKsHv0FAEDxszcuf3exRSmuVQj2oeAvZbCIp62ZNtkK_vVu24MHT8IYf85hB6BrIjArg9zB7JqKUeX6CJiAYy5gUH6doQgiBDLig5-gipe1w0ULCBM03Xe-_dIMXznnjbWv2WLc1Xln949tP_G6bYHy_x77Fy0Z33cFcBt_glxi6XZN8aC_RmdNNsldHnaK35eJ1vsrWm8en-cM60xRknxVGcMbL3JauJjVwamlVWOloJSUxdZE76px2lJHCAWfaGVMCFbrSpSGWEjZFN2NuF8P3zqZebcMutsNLRYeqUhRcwkDdjZSJIaVoneri0DDuFRB12EiBOm40sLcjq73Wf2n_wV-iJGQN</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Xu, Lincheng</creator><creator>Tian, Fang-Bao</creator><creator>Lai, Joseph C. S</creator><creator>Young, John</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8946-9993</orcidid></search><sort><creationdate>202106</creationdate><title>Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion</title><author>Xu, Lincheng ; Tian, Fang-Bao ; Lai, Joseph C. S ; Young, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-7c543496e9fd0d142e2b7e8f2b880cd76f2ffaf2307f143afcc9125aba9c0e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angle of attack</topic><topic>Computational fluid dynamics</topic><topic>Drag</topic><topic>Efficiency</topic><topic>Flapping</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Heaving</topic><topic>Kinematics</topic><topic>Lift</topic><topic>Propulsive efficiency</topic><topic>Reynolds number</topic><topic>Sine waves</topic><topic>Static tests</topic><topic>Strouhal number</topic><topic>Uniform flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lincheng</creatorcontrib><creatorcontrib>Tian, Fang-Bao</creatorcontrib><creatorcontrib>Lai, Joseph C. S</creatorcontrib><creatorcontrib>Young, John</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lincheng</au><au>Tian, Fang-Bao</au><au>Lai, Joseph C. S</au><au>Young, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion</atitle><jtitle>AIAA journal</jtitle><date>2021-06</date><risdate>2021</risdate><volume>59</volume><issue>6</issue><spage>2143</spage><epage>2154</epage><pages>2143-2154</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A novel model is proposed to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity of a flapping foil based on a lift–drag ratio under the assumption of negligible pitching power. The optimal efficiency increases with the lift–drag ratio. The optimal Strouhal number of sinusoidal heaving motion approaches 0.318, within the range of 0.25–0.35 for optimal efficiency. In addition, the thrust generation of a foil requires that the product of the lift–drag ratio and the dimensionless heaving velocity must be greater than unity. To demonstrate how to use the new model to estimate the optimal propulsive efficiency and the optimal dimensionless heaving velocity, the lift–drag ratio is estimated using static tests of an impulsively started uniform flow over an infinitely thin flat plate for a range of angle of attack. To illustrate how to design kinematics to achieve the estimated optimal efficiency, two examples of flapping motions of a flat plate at a Reynolds number of 2000 are considered: sinusoidal and nonsinusoidal. Results show that the efficiency of nonsinusoidal flapping motion approaches the optimal efficiency using the lift–drag ratio estimated from static tests over the effective angle of attack of 6–30°.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J059866</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8946-9993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2021-06, Vol.59 (6), p.2143-2154 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_2533857481 |
source | Alma/SFX Local Collection |
subjects | Angle of attack Computational fluid dynamics Drag Efficiency Flapping Flat plates Fluid flow Heaving Kinematics Lift Propulsive efficiency Reynolds number Sine waves Static tests Strouhal number Uniform flow Velocity |
title | Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Efficiency%20and%20Heaving%20Velocity%20in%20Flapping%20Foil%20Propulsion&rft.jtitle=AIAA%20journal&rft.au=Xu,%20Lincheng&rft.date=2021-06&rft.volume=59&rft.issue=6&rft.spage=2143&rft.epage=2154&rft.pages=2143-2154&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J059866&rft_dat=%3Cproquest_cross%3E2533857481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533857481&rft_id=info:pmid/&rfr_iscdi=true |