Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting

The influence of heat treatment on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L (SS316L) produced via selective laser melting (SLM) was investigated. The fabricated SLM samples were subjected to two different heat treatments: a typical furnace-type heat treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-03, Vol.806, p.140805, Article 140805
Hauptverfasser: Shin, Won-Sang, Son, Bongkuk, Song, Wansu, Sohn, Hyonkee, Jang, Ho, Kim, Yoon-Jun, Park, Changkyoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of heat treatment on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L (SS316L) produced via selective laser melting (SLM) was investigated. The fabricated SLM samples were subjected to two different heat treatments: a typical furnace-type heat treatment conducted at 1100 °C for 0.5 h and hot isostatic pressing performed at 1100 °C and 100 MPa for 1.5 h. High-density SLM samples with low porosities were obtained by increasing the laser power and decreasing the scan speed. The heat treatments of the fabricated SLM samples induced the removal of porosity, cellular microstructure, and dense dislocation structures with a slight increase in grain size. In terms of mechanical properties, the fabricated SLM samples exhibited similar hardness and tensile strength properties to those of the conventional SS316L, while a significantly lower elongation was evident. The heat treatments of the fabricated SLM samples improved elongation, while the surface hardness and tensile strength decreased owing to microstructural evolution. During the pin-on-disk test, the conventional SS316L and fabricated SLM sample exhibited similar wear resistance values, which decreased after the heat treatments of the fabricated SLM samples owing to the heat treatment-induced surface softening.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2021.140805