Symmetry detection algorithm to classify the tea grades using artificial intelligence

In classifying tea grades the current available used methods are not consistent to extract the tea texture features accurately. which is resulting low efficiency and poor classification results. To overcome this challenge the novel symmetry detection algorithm based on artificial intelligence is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microprocessors and microsystems 2021-03, Vol.81, p.103738, Article 103738
Hauptverfasser: Jiang, Mingfu, Chen, Zhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103738
container_title Microprocessors and microsystems
container_volume 81
creator Jiang, Mingfu
Chen, Zhuo
description In classifying tea grades the current available used methods are not consistent to extract the tea texture features accurately. which is resulting low efficiency and poor classification results. To overcome this challenge the novel symmetry detection algorithm based on artificial intelligence is proposed. The symmetry detection algorithm is used to detect the edge of tea image, which is the region of interest to process further based on the captured data. The vertigo model is constructed from captured inputs. The tea feature vector is extracted with the help of BP algorithm and the tea grade is analyzed using the artificial intelligence support. Using the proposed algorithm method, the experimental results shows high classification efficiency and higher accuracy results.
doi_str_mv 10.1016/j.micpro.2020.103738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533790704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141933120308838</els_id><sourcerecordid>2533790704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-db97b64e81604e5a5d002ea52a9bd42aeefd536b10559d9bdd59a8d11acb109a3</originalsourceid><addsrcrecordid>eNp9kElLBDEUhIMoOI7-Aw8Bzz1m7eUiiLjBgAedc0gnr3vS9DImGaH_vRnas6cHRVU96kPolpINJTS_7zaDMwc_bRhhJ4kXvDxDK1oWLKsEz8_RilBBs4pzeomuQugIIZLkbIV2n_MwQPQzthDBRDeNWPft5F3cDzhO2PQ6BNfMOO4BR9C49dpCwMfgxhZrH13jjNM9dmOEvnctjAau0UWj-wA3f3eNdi_PX09v2fbj9f3pcZsZzkXMbF0VdS6gpDkRILW0hDDQkumqtoJpgMZKnteUSFnZpFlZ6dJSqk3SKs3X6G7pTeO_jxCi6qajH9NLxSTnRUUKIpJLLC7jpxA8NOrg3aD9rChRJ4CqUwtAdQKoFoAp9rDEIC34ceBVMO60zjqfSCk7uf8LfgFNOHy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533790704</pqid></control><display><type>article</type><title>Symmetry detection algorithm to classify the tea grades using artificial intelligence</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Mingfu ; Chen, Zhuo</creator><creatorcontrib>Jiang, Mingfu ; Chen, Zhuo</creatorcontrib><description>In classifying tea grades the current available used methods are not consistent to extract the tea texture features accurately. which is resulting low efficiency and poor classification results. To overcome this challenge the novel symmetry detection algorithm based on artificial intelligence is proposed. The symmetry detection algorithm is used to detect the edge of tea image, which is the region of interest to process further based on the captured data. The vertigo model is constructed from captured inputs. The tea feature vector is extracted with the help of BP algorithm and the tea grade is analyzed using the artificial intelligence support. Using the proposed algorithm method, the experimental results shows high classification efficiency and higher accuracy results.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2020.103738</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Artificial intelligence classification ; Classification ; Feature extraction ; Feature vector ; Symmetry ; Symmetry detection ; Symmetry detection algorithm ; Tea grade ; Vertigo</subject><ispartof>Microprocessors and microsystems, 2021-03, Vol.81, p.103738, Article 103738</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-db97b64e81604e5a5d002ea52a9bd42aeefd536b10559d9bdd59a8d11acb109a3</citedby><cites>FETCH-LOGICAL-c334t-db97b64e81604e5a5d002ea52a9bd42aeefd536b10559d9bdd59a8d11acb109a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.micpro.2020.103738$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jiang, Mingfu</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><title>Symmetry detection algorithm to classify the tea grades using artificial intelligence</title><title>Microprocessors and microsystems</title><description>In classifying tea grades the current available used methods are not consistent to extract the tea texture features accurately. which is resulting low efficiency and poor classification results. To overcome this challenge the novel symmetry detection algorithm based on artificial intelligence is proposed. The symmetry detection algorithm is used to detect the edge of tea image, which is the region of interest to process further based on the captured data. The vertigo model is constructed from captured inputs. The tea feature vector is extracted with the help of BP algorithm and the tea grade is analyzed using the artificial intelligence support. Using the proposed algorithm method, the experimental results shows high classification efficiency and higher accuracy results.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence classification</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Feature vector</subject><subject>Symmetry</subject><subject>Symmetry detection</subject><subject>Symmetry detection algorithm</subject><subject>Tea grade</subject><subject>Vertigo</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElLBDEUhIMoOI7-Aw8Bzz1m7eUiiLjBgAedc0gnr3vS9DImGaH_vRnas6cHRVU96kPolpINJTS_7zaDMwc_bRhhJ4kXvDxDK1oWLKsEz8_RilBBs4pzeomuQugIIZLkbIV2n_MwQPQzthDBRDeNWPft5F3cDzhO2PQ6BNfMOO4BR9C49dpCwMfgxhZrH13jjNM9dmOEvnctjAau0UWj-wA3f3eNdi_PX09v2fbj9f3pcZsZzkXMbF0VdS6gpDkRILW0hDDQkumqtoJpgMZKnteUSFnZpFlZ6dJSqk3SKs3X6G7pTeO_jxCi6qajH9NLxSTnRUUKIpJLLC7jpxA8NOrg3aD9rChRJ4CqUwtAdQKoFoAp9rDEIC34ceBVMO60zjqfSCk7uf8LfgFNOHy6</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Jiang, Mingfu</creator><creator>Chen, Zhuo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202103</creationdate><title>Symmetry detection algorithm to classify the tea grades using artificial intelligence</title><author>Jiang, Mingfu ; Chen, Zhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-db97b64e81604e5a5d002ea52a9bd42aeefd536b10559d9bdd59a8d11acb109a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence classification</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Feature vector</topic><topic>Symmetry</topic><topic>Symmetry detection</topic><topic>Symmetry detection algorithm</topic><topic>Tea grade</topic><topic>Vertigo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Mingfu</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Mingfu</au><au>Chen, Zhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry detection algorithm to classify the tea grades using artificial intelligence</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2021-03</date><risdate>2021</risdate><volume>81</volume><spage>103738</spage><pages>103738-</pages><artnum>103738</artnum><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>In classifying tea grades the current available used methods are not consistent to extract the tea texture features accurately. which is resulting low efficiency and poor classification results. To overcome this challenge the novel symmetry detection algorithm based on artificial intelligence is proposed. The symmetry detection algorithm is used to detect the edge of tea image, which is the region of interest to process further based on the captured data. The vertigo model is constructed from captured inputs. The tea feature vector is extracted with the help of BP algorithm and the tea grade is analyzed using the artificial intelligence support. Using the proposed algorithm method, the experimental results shows high classification efficiency and higher accuracy results.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2020.103738</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-9331
ispartof Microprocessors and microsystems, 2021-03, Vol.81, p.103738, Article 103738
issn 0141-9331
1872-9436
language eng
recordid cdi_proquest_journals_2533790704
source Elsevier ScienceDirect Journals
subjects Algorithms
Artificial intelligence
Artificial intelligence classification
Classification
Feature extraction
Feature vector
Symmetry
Symmetry detection
Symmetry detection algorithm
Tea grade
Vertigo
title Symmetry detection algorithm to classify the tea grades using artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20detection%20algorithm%20to%20classify%20the%20tea%20grades%20using%20artificial%20intelligence&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Jiang,%20Mingfu&rft.date=2021-03&rft.volume=81&rft.spage=103738&rft.pages=103738-&rft.artnum=103738&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2020.103738&rft_dat=%3Cproquest_cross%3E2533790704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533790704&rft_id=info:pmid/&rft_els_id=S0141933120308838&rfr_iscdi=true