Semantic embedding for regions of interest
The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with ea...
Gespeichert in:
Veröffentlicht in: | The VLDB journal 2021-05, Vol.30 (3), p.311-331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 3 |
container_start_page | 311 |
container_title | The VLDB journal |
container_volume | 30 |
creator | Paul, Debjyoti Li, Feifei Phillips, Jeff M. |
description | The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines. |
doi_str_mv | 10.1007/s00778-020-00647-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533762061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533762061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fb0J0kjRJ9yiLX7DgQQVvIUknpYtt1qR78N8breDNOcxc3ucdeAg5Z3DFAPR1Lks3FDhQAFVrCgdkAat6RRut3w7JgoFStClzTE5y3gIA51wuyOUzDnacel_h4LBt-7GrQkxVwq6PY65iqPpxwoR5OiVHwb5nPPu9S_J6d_uyfqCbp_vH9c2GeqHERJ1tmeYqWIfYWIvgmNdOttIz1Fbx4IUNDXOce-VA-FpJ2wpwTaG11FIsycXcu0vxY18em23cp7G8NFwKoRUHxUqKzymfYs4Jg9mlfrDp0zAw307M7MQUJ-bHiYECiRnKJTx2mP6q_6G-APi5Y7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533762061</pqid></control><display><type>article</type><title>Semantic embedding for regions of interest</title><source>ACM Digital Library Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Paul, Debjyoti ; Li, Feifei ; Phillips, Jeff M.</creator><creatorcontrib>Paul, Debjyoti ; Li, Feifei ; Phillips, Jeff M.</creatorcontrib><description>The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.</description><identifier>ISSN: 1066-8888</identifier><identifier>EISSN: 0949-877X</identifier><identifier>DOI: 10.1007/s00778-020-00647-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Science ; Database Management ; Embedding ; Location based services ; Regular Paper ; Semantics ; Social networks ; Spatial data</subject><ispartof>The VLDB journal, 2021-05, Vol.30 (3), p.311-331</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</citedby><cites>FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</cites><orcidid>0000-0001-8057-399X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00778-020-00647-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00778-020-00647-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Paul, Debjyoti</creatorcontrib><creatorcontrib>Li, Feifei</creatorcontrib><creatorcontrib>Phillips, Jeff M.</creatorcontrib><title>Semantic embedding for regions of interest</title><title>The VLDB journal</title><addtitle>The VLDB Journal</addtitle><description>The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.</description><subject>Computer Science</subject><subject>Database Management</subject><subject>Embedding</subject><subject>Location based services</subject><subject>Regular Paper</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Spatial data</subject><issn>1066-8888</issn><issn>0949-877X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fb0J0kjRJ9yiLX7DgQQVvIUknpYtt1qR78N8breDNOcxc3ucdeAg5Z3DFAPR1Lks3FDhQAFVrCgdkAat6RRut3w7JgoFStClzTE5y3gIA51wuyOUzDnacel_h4LBt-7GrQkxVwq6PY65iqPpxwoR5OiVHwb5nPPu9S_J6d_uyfqCbp_vH9c2GeqHERJ1tmeYqWIfYWIvgmNdOttIz1Fbx4IUNDXOce-VA-FpJ2wpwTaG11FIsycXcu0vxY18em23cp7G8NFwKoRUHxUqKzymfYs4Jg9mlfrDp0zAw307M7MQUJ-bHiYECiRnKJTx2mP6q_6G-APi5Y7U</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Paul, Debjyoti</creator><creator>Li, Feifei</creator><creator>Phillips, Jeff M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8057-399X</orcidid></search><sort><creationdate>20210501</creationdate><title>Semantic embedding for regions of interest</title><author>Paul, Debjyoti ; Li, Feifei ; Phillips, Jeff M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Database Management</topic><topic>Embedding</topic><topic>Location based services</topic><topic>Regular Paper</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Spatial data</topic><toplevel>online_resources</toplevel><creatorcontrib>Paul, Debjyoti</creatorcontrib><creatorcontrib>Li, Feifei</creatorcontrib><creatorcontrib>Phillips, Jeff M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The VLDB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Debjyoti</au><au>Li, Feifei</au><au>Phillips, Jeff M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic embedding for regions of interest</atitle><jtitle>The VLDB journal</jtitle><stitle>The VLDB Journal</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>30</volume><issue>3</issue><spage>311</spage><epage>331</epage><pages>311-331</pages><issn>1066-8888</issn><eissn>0949-877X</eissn><abstract>The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00778-020-00647-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8057-399X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-8888 |
ispartof | The VLDB journal, 2021-05, Vol.30 (3), p.311-331 |
issn | 1066-8888 0949-877X |
language | eng |
recordid | cdi_proquest_journals_2533762061 |
source | ACM Digital Library Complete; SpringerLink Journals - AutoHoldings |
subjects | Computer Science Database Management Embedding Location based services Regular Paper Semantics Social networks Spatial data |
title | Semantic embedding for regions of interest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20embedding%20for%20regions%20of%20interest&rft.jtitle=The%20VLDB%20journal&rft.au=Paul,%20Debjyoti&rft.date=2021-05-01&rft.volume=30&rft.issue=3&rft.spage=311&rft.epage=331&rft.pages=311-331&rft.issn=1066-8888&rft.eissn=0949-877X&rft_id=info:doi/10.1007/s00778-020-00647-0&rft_dat=%3Cproquest_cross%3E2533762061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533762061&rft_id=info:pmid/&rfr_iscdi=true |