Semantic embedding for regions of interest

The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The VLDB journal 2021-05, Vol.30 (3), p.311-331
Hauptverfasser: Paul, Debjyoti, Li, Feifei, Phillips, Jeff M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 3
container_start_page 311
container_title The VLDB journal
container_volume 30
creator Paul, Debjyoti
Li, Feifei
Phillips, Jeff M.
description The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.
doi_str_mv 10.1007/s00778-020-00647-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533762061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533762061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fb0J0kjRJ9yiLX7DgQQVvIUknpYtt1qR78N8breDNOcxc3ucdeAg5Z3DFAPR1Lks3FDhQAFVrCgdkAat6RRut3w7JgoFStClzTE5y3gIA51wuyOUzDnacel_h4LBt-7GrQkxVwq6PY65iqPpxwoR5OiVHwb5nPPu9S_J6d_uyfqCbp_vH9c2GeqHERJ1tmeYqWIfYWIvgmNdOttIz1Fbx4IUNDXOce-VA-FpJ2wpwTaG11FIsycXcu0vxY18em23cp7G8NFwKoRUHxUqKzymfYs4Jg9mlfrDp0zAw307M7MQUJ-bHiYECiRnKJTx2mP6q_6G-APi5Y7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533762061</pqid></control><display><type>article</type><title>Semantic embedding for regions of interest</title><source>ACM Digital Library Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Paul, Debjyoti ; Li, Feifei ; Phillips, Jeff M.</creator><creatorcontrib>Paul, Debjyoti ; Li, Feifei ; Phillips, Jeff M.</creatorcontrib><description>The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.</description><identifier>ISSN: 1066-8888</identifier><identifier>EISSN: 0949-877X</identifier><identifier>DOI: 10.1007/s00778-020-00647-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Science ; Database Management ; Embedding ; Location based services ; Regular Paper ; Semantics ; Social networks ; Spatial data</subject><ispartof>The VLDB journal, 2021-05, Vol.30 (3), p.311-331</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</citedby><cites>FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</cites><orcidid>0000-0001-8057-399X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00778-020-00647-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00778-020-00647-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Paul, Debjyoti</creatorcontrib><creatorcontrib>Li, Feifei</creatorcontrib><creatorcontrib>Phillips, Jeff M.</creatorcontrib><title>Semantic embedding for regions of interest</title><title>The VLDB journal</title><addtitle>The VLDB Journal</addtitle><description>The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.</description><subject>Computer Science</subject><subject>Database Management</subject><subject>Embedding</subject><subject>Location based services</subject><subject>Regular Paper</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Spatial data</subject><issn>1066-8888</issn><issn>0949-877X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fb0J0kjRJ9yiLX7DgQQVvIUknpYtt1qR78N8breDNOcxc3ucdeAg5Z3DFAPR1Lks3FDhQAFVrCgdkAat6RRut3w7JgoFStClzTE5y3gIA51wuyOUzDnacel_h4LBt-7GrQkxVwq6PY65iqPpxwoR5OiVHwb5nPPu9S_J6d_uyfqCbp_vH9c2GeqHERJ1tmeYqWIfYWIvgmNdOttIz1Fbx4IUNDXOce-VA-FpJ2wpwTaG11FIsycXcu0vxY18em23cp7G8NFwKoRUHxUqKzymfYs4Jg9mlfrDp0zAw307M7MQUJ-bHiYECiRnKJTx2mP6q_6G-APi5Y7U</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Paul, Debjyoti</creator><creator>Li, Feifei</creator><creator>Phillips, Jeff M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8057-399X</orcidid></search><sort><creationdate>20210501</creationdate><title>Semantic embedding for regions of interest</title><author>Paul, Debjyoti ; Li, Feifei ; Phillips, Jeff M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bad1726fabee8aae0b1c7b5d5c1e7a62fc3af81b22c6b03c465ad30b836375753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Database Management</topic><topic>Embedding</topic><topic>Location based services</topic><topic>Regular Paper</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Spatial data</topic><toplevel>online_resources</toplevel><creatorcontrib>Paul, Debjyoti</creatorcontrib><creatorcontrib>Li, Feifei</creatorcontrib><creatorcontrib>Phillips, Jeff M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The VLDB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Debjyoti</au><au>Li, Feifei</au><au>Phillips, Jeff M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic embedding for regions of interest</atitle><jtitle>The VLDB journal</jtitle><stitle>The VLDB Journal</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>30</volume><issue>3</issue><spage>311</spage><epage>331</epage><pages>311-331</pages><issn>1066-8888</issn><eissn>0949-877X</eissn><abstract>The available spatial data are rapidly growing and also diversifying. One may obtain in large quantities information such as annotated point/place of interest (POIs), check-in comments on those POIs, geo-tagged microblog comments, and demarked regions of interest (ROI). All sources interplay with each other, and together build a more complete picture of the spatial and social dynamics at play in a region. However, building a single fused representation of these data entries has been mainly rudimentary, such as allowing spatial joins. In this paper, we extend the concept of semantic embedding for POIs (points of interests) and devise the first semantic embedding of ROIs, and in particular ones that captures both its spatial and its semantic components. To accomplish this, we develop a multipart network model capturing the relationships between the diverse components, and through random-walk-based approaches, use this to embed the ROIs. We demonstrate the effectiveness of this embedding at simultaneously capturing both the spatial and semantic relationships between ROIs through extensive experiments. Applications like popularity region prediction demonstrate the benefit of using ROI embedding as features in comparison with baselines.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00778-020-00647-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8057-399X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-8888
ispartof The VLDB journal, 2021-05, Vol.30 (3), p.311-331
issn 1066-8888
0949-877X
language eng
recordid cdi_proquest_journals_2533762061
source ACM Digital Library Complete; SpringerLink Journals - AutoHoldings
subjects Computer Science
Database Management
Embedding
Location based services
Regular Paper
Semantics
Social networks
Spatial data
title Semantic embedding for regions of interest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20embedding%20for%20regions%20of%20interest&rft.jtitle=The%20VLDB%20journal&rft.au=Paul,%20Debjyoti&rft.date=2021-05-01&rft.volume=30&rft.issue=3&rft.spage=311&rft.epage=331&rft.pages=311-331&rft.issn=1066-8888&rft.eissn=0949-877X&rft_id=info:doi/10.1007/s00778-020-00647-0&rft_dat=%3Cproquest_cross%3E2533762061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533762061&rft_id=info:pmid/&rfr_iscdi=true