Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers

Direct numerical simulations of two-dimensional (2D) and three-dimensional (3D), single-mode and multi-mode, incompressible immiscible Rayleigh–Taylor (RT) instabilities are performed using a phase-field approach and high-order finite-difference schemes. Various combinations of Atwood number, Reynol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-05, Vol.33 (5)
Hauptverfasser: Hamzehloo, Arash, Bartholomew, Paul, Laizet, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Hamzehloo, Arash
Bartholomew, Paul
Laizet, Sylvain
description Direct numerical simulations of two-dimensional (2D) and three-dimensional (3D), single-mode and multi-mode, incompressible immiscible Rayleigh–Taylor (RT) instabilities are performed using a phase-field approach and high-order finite-difference schemes. Various combinations of Atwood number, Reynolds number, surface tension, and initial perturbation amplitude are investigated. It is found that at high Reynolds numbers, the surface tension, if significant, could prevent the formation of Kelvin–Helmholtz type instabilities within the bubble region. A relationship is proposed for the vertical distance of the bubble and spike vs the Atwood number. The spike and bubble reaccelerate after reaching a temporary plateau due to the reduction of the friction drag as a result of the formation of the spike vortices and also the formation of a momentum jet traveling upward within the bubble region. The interface for a 3D single-mode instability grows exponentially; however, a higher Reynolds number and/or a lower Atwood number could result in a noticeably larger surface area after the initial growth. It is also shown that a 3D multi-mode RT instability initially displays an exponential interface growth rate similar to single-mode RT instabilities. Due to the collapse and merging of individual single-mode instabilities, the interface area for a multi-mode RT instability is strongly dependent to the mesh resolution after the exponential growth rate. However, the ratio of kinetic energy over released potential energy exhibits an almost steady state after the initial exponential growth, with values around 0.4, independently of the mesh resolution.
doi_str_mv 10.1063/5.0049867
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2533520160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533520160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6d476c81cdf9f0b60159a61df11e253044baa15f9998e33abf0d5039bc21d39b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgSmHqzWQm0yxL_YWCIHU9ZPKjKTOTmmQo3fkOvqFPYmq7dnXO4jv3cA9ClwQmBBi9LScABZ-y6giNCEx5VjHGjne-gowxSk7RWQgrAKA8ZyPk7qzXMuJ-6LS3UrQ42G5oRbSuD9gZbHvpurXXIdim1fhVbFtt3z9-vr6XyTqfgBBFY1sbrQ5YRNy6DRa9wp1WdujwLG6cU7uCRvtwjk6MaIO-OOgYvT3cL-dP2eLl8Xk-W2SS5lXMmCoqJqdEKsMNNAxIyQUjyhCi85JCUTRCkNJwzqeaUtEYUGV6qZE5UUnoGF3t7669-xx0iPXKDb5PlXXK0zIHwiBR13tKeheC16Zee9sJv60J1Ls967I-7JnYmz0bpI1_-_wD_wK0Y3ej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533520160</pqid></control><display><type>article</type><title>Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hamzehloo, Arash ; Bartholomew, Paul ; Laizet, Sylvain</creator><creatorcontrib>Hamzehloo, Arash ; Bartholomew, Paul ; Laizet, Sylvain</creatorcontrib><description>Direct numerical simulations of two-dimensional (2D) and three-dimensional (3D), single-mode and multi-mode, incompressible immiscible Rayleigh–Taylor (RT) instabilities are performed using a phase-field approach and high-order finite-difference schemes. Various combinations of Atwood number, Reynolds number, surface tension, and initial perturbation amplitude are investigated. It is found that at high Reynolds numbers, the surface tension, if significant, could prevent the formation of Kelvin–Helmholtz type instabilities within the bubble region. A relationship is proposed for the vertical distance of the bubble and spike vs the Atwood number. The spike and bubble reaccelerate after reaching a temporary plateau due to the reduction of the friction drag as a result of the formation of the spike vortices and also the formation of a momentum jet traveling upward within the bubble region. The interface for a 3D single-mode instability grows exponentially; however, a higher Reynolds number and/or a lower Atwood number could result in a noticeably larger surface area after the initial growth. It is also shown that a 3D multi-mode RT instability initially displays an exponential interface growth rate similar to single-mode RT instabilities. Due to the collapse and merging of individual single-mode instabilities, the interface area for a multi-mode RT instability is strongly dependent to the mesh resolution after the exponential growth rate. However, the ratio of kinetic energy over released potential energy exhibits an almost steady state after the initial exponential growth, with values around 0.4, independently of the mesh resolution.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0049867</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Direct numerical simulation ; Finite difference method ; Finite element method ; Fluid dynamics ; Fluid flow ; Friction drag ; Friction reduction ; High Reynolds number ; Interface stability ; Kinetic energy ; Perturbation ; Physics ; Potential energy ; Reynolds number ; Spikes ; Surface tension ; Taylor instability</subject><ispartof>Physics of fluids (1994), 2021-05, Vol.33 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6d476c81cdf9f0b60159a61df11e253044baa15f9998e33abf0d5039bc21d39b3</citedby><cites>FETCH-LOGICAL-c327t-6d476c81cdf9f0b60159a61df11e253044baa15f9998e33abf0d5039bc21d39b3</cites><orcidid>0000-0003-0346-0662 ; 0000-0003-1470-4490 ; 0000-0001-7413-670X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Hamzehloo, Arash</creatorcontrib><creatorcontrib>Bartholomew, Paul</creatorcontrib><creatorcontrib>Laizet, Sylvain</creatorcontrib><title>Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers</title><title>Physics of fluids (1994)</title><description>Direct numerical simulations of two-dimensional (2D) and three-dimensional (3D), single-mode and multi-mode, incompressible immiscible Rayleigh–Taylor (RT) instabilities are performed using a phase-field approach and high-order finite-difference schemes. Various combinations of Atwood number, Reynolds number, surface tension, and initial perturbation amplitude are investigated. It is found that at high Reynolds numbers, the surface tension, if significant, could prevent the formation of Kelvin–Helmholtz type instabilities within the bubble region. A relationship is proposed for the vertical distance of the bubble and spike vs the Atwood number. The spike and bubble reaccelerate after reaching a temporary plateau due to the reduction of the friction drag as a result of the formation of the spike vortices and also the formation of a momentum jet traveling upward within the bubble region. The interface for a 3D single-mode instability grows exponentially; however, a higher Reynolds number and/or a lower Atwood number could result in a noticeably larger surface area after the initial growth. It is also shown that a 3D multi-mode RT instability initially displays an exponential interface growth rate similar to single-mode RT instabilities. Due to the collapse and merging of individual single-mode instabilities, the interface area for a multi-mode RT instability is strongly dependent to the mesh resolution after the exponential growth rate. However, the ratio of kinetic energy over released potential energy exhibits an almost steady state after the initial exponential growth, with values around 0.4, independently of the mesh resolution.</description><subject>Computational fluid dynamics</subject><subject>Direct numerical simulation</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Friction drag</subject><subject>Friction reduction</subject><subject>High Reynolds number</subject><subject>Interface stability</subject><subject>Kinetic energy</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Reynolds number</subject><subject>Spikes</subject><subject>Surface tension</subject><subject>Taylor instability</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgSmHqzWQm0yxL_YWCIHU9ZPKjKTOTmmQo3fkOvqFPYmq7dnXO4jv3cA9ClwQmBBi9LScABZ-y6giNCEx5VjHGjne-gowxSk7RWQgrAKA8ZyPk7qzXMuJ-6LS3UrQ42G5oRbSuD9gZbHvpurXXIdim1fhVbFtt3z9-vr6XyTqfgBBFY1sbrQ5YRNy6DRa9wp1WdujwLG6cU7uCRvtwjk6MaIO-OOgYvT3cL-dP2eLl8Xk-W2SS5lXMmCoqJqdEKsMNNAxIyQUjyhCi85JCUTRCkNJwzqeaUtEYUGV6qZE5UUnoGF3t7669-xx0iPXKDb5PlXXK0zIHwiBR13tKeheC16Zee9sJv60J1Ls967I-7JnYmz0bpI1_-_wD_wK0Y3ej</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hamzehloo, Arash</creator><creator>Bartholomew, Paul</creator><creator>Laizet, Sylvain</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0346-0662</orcidid><orcidid>https://orcid.org/0000-0003-1470-4490</orcidid><orcidid>https://orcid.org/0000-0001-7413-670X</orcidid></search><sort><creationdate>202105</creationdate><title>Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers</title><author>Hamzehloo, Arash ; Bartholomew, Paul ; Laizet, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6d476c81cdf9f0b60159a61df11e253044baa15f9998e33abf0d5039bc21d39b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Direct numerical simulation</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Friction drag</topic><topic>Friction reduction</topic><topic>High Reynolds number</topic><topic>Interface stability</topic><topic>Kinetic energy</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Reynolds number</topic><topic>Spikes</topic><topic>Surface tension</topic><topic>Taylor instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamzehloo, Arash</creatorcontrib><creatorcontrib>Bartholomew, Paul</creatorcontrib><creatorcontrib>Laizet, Sylvain</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamzehloo, Arash</au><au>Bartholomew, Paul</au><au>Laizet, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Direct numerical simulations of two-dimensional (2D) and three-dimensional (3D), single-mode and multi-mode, incompressible immiscible Rayleigh–Taylor (RT) instabilities are performed using a phase-field approach and high-order finite-difference schemes. Various combinations of Atwood number, Reynolds number, surface tension, and initial perturbation amplitude are investigated. It is found that at high Reynolds numbers, the surface tension, if significant, could prevent the formation of Kelvin–Helmholtz type instabilities within the bubble region. A relationship is proposed for the vertical distance of the bubble and spike vs the Atwood number. The spike and bubble reaccelerate after reaching a temporary plateau due to the reduction of the friction drag as a result of the formation of the spike vortices and also the formation of a momentum jet traveling upward within the bubble region. The interface for a 3D single-mode instability grows exponentially; however, a higher Reynolds number and/or a lower Atwood number could result in a noticeably larger surface area after the initial growth. It is also shown that a 3D multi-mode RT instability initially displays an exponential interface growth rate similar to single-mode RT instabilities. Due to the collapse and merging of individual single-mode instabilities, the interface area for a multi-mode RT instability is strongly dependent to the mesh resolution after the exponential growth rate. However, the ratio of kinetic energy over released potential energy exhibits an almost steady state after the initial exponential growth, with values around 0.4, independently of the mesh resolution.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0049867</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0346-0662</orcidid><orcidid>https://orcid.org/0000-0003-1470-4490</orcidid><orcidid>https://orcid.org/0000-0001-7413-670X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-05, Vol.33 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2533520160
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computational fluid dynamics
Direct numerical simulation
Finite difference method
Finite element method
Fluid dynamics
Fluid flow
Friction drag
Friction reduction
High Reynolds number
Interface stability
Kinetic energy
Perturbation
Physics
Potential energy
Reynolds number
Spikes
Surface tension
Taylor instability
title Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulations%20of%20incompressible%20Rayleigh%E2%80%93Taylor%20instabilities%20at%20low%20and%20medium%20Atwood%20numbers&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hamzehloo,%20Arash&rft.date=2021-05&rft.volume=33&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0049867&rft_dat=%3Cproquest_scita%3E2533520160%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533520160&rft_id=info:pmid/&rfr_iscdi=true