Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging

The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2021, Vol.23, p.1605-1616
Hauptverfasser: Lin, Yi-Hsun, Chen, Homer H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1616
container_issue
container_start_page 1605
container_title IEEE transactions on multimedia
container_volume 23
creator Lin, Yi-Hsun
Chen, Homer H.
description The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.
doi_str_mv 10.1109/TMM.2020.3001521
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2533489231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9113752</ieee_id><sourcerecordid>2533489231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAc-pMsslujrX4BVsUrOeQbpNli25qsiv4701p8TQvw_POwEPINcIMEfTdarmcceAwEwAoOZ6QCeoCGUBZnuYsOTDNEc7JRUrbzBQSygm5X9mWvsWws60dutBT22_oIqSBvbs-dUP342jtbOy7vqU-RLocU9fQ-TgElqttXl-SM28_k7s6zin5eHxYLZ5Z_fr0spjXrOEaB6Ya79ZizRVvNFZaKV8IC8qChaLMqdrIYu1dY6GsMuIqrtBKoZTiymvPxZTcHu7uYvgeXRrMNoyxzy8Nl0IUleYCMwUHqokhpei82cXuy8Zfg2D2pkw2ZfamzNFUrtwcKp1z7h_XiKKUXPwBv2Riig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533489231</pqid></control><display><type>article</type><title>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Yi-Hsun ; Chen, Homer H.</creator><creatorcontrib>Lin, Yi-Hsun ; Chen, Homer H.</creatorcontrib><description>The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3001521</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Context ; cost-sensitive learning ; Learning ; Links ; Marking ; Multimedia systems ; Music ; Music auto-tagging ; music information retrieval ; Musical performances ; Performance enhancement ; Propagation ; Propagation losses ; Social networking (online) ; tag propagation ; Tagging ; Tags ; Training ; Training data ; Two dimensional models</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.1605-1616</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</citedby><cites>FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</cites><orcidid>0000-0002-2379-0741 ; 0000-0002-8795-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9113752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9113752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Yi-Hsun</creatorcontrib><creatorcontrib>Chen, Homer H.</creatorcontrib><title>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.</description><subject>Context</subject><subject>cost-sensitive learning</subject><subject>Learning</subject><subject>Links</subject><subject>Marking</subject><subject>Multimedia systems</subject><subject>Music</subject><subject>Music auto-tagging</subject><subject>music information retrieval</subject><subject>Musical performances</subject><subject>Performance enhancement</subject><subject>Propagation</subject><subject>Propagation losses</subject><subject>Social networking (online)</subject><subject>tag propagation</subject><subject>Tagging</subject><subject>Tags</subject><subject>Training</subject><subject>Training data</subject><subject>Two dimensional models</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAc-pMsslujrX4BVsUrOeQbpNli25qsiv4701p8TQvw_POwEPINcIMEfTdarmcceAwEwAoOZ6QCeoCGUBZnuYsOTDNEc7JRUrbzBQSygm5X9mWvsWws60dutBT22_oIqSBvbs-dUP342jtbOy7vqU-RLocU9fQ-TgElqttXl-SM28_k7s6zin5eHxYLZ5Z_fr0spjXrOEaB6Ya79ZizRVvNFZaKV8IC8qChaLMqdrIYu1dY6GsMuIqrtBKoZTiymvPxZTcHu7uYvgeXRrMNoyxzy8Nl0IUleYCMwUHqokhpei82cXuy8Zfg2D2pkw2ZfamzNFUrtwcKp1z7h_XiKKUXPwBv2Riig</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lin, Yi-Hsun</creator><creator>Chen, Homer H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2379-0741</orcidid><orcidid>https://orcid.org/0000-0002-8795-1911</orcidid></search><sort><creationdate>2021</creationdate><title>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</title><author>Lin, Yi-Hsun ; Chen, Homer H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Context</topic><topic>cost-sensitive learning</topic><topic>Learning</topic><topic>Links</topic><topic>Marking</topic><topic>Multimedia systems</topic><topic>Music</topic><topic>Music auto-tagging</topic><topic>music information retrieval</topic><topic>Musical performances</topic><topic>Performance enhancement</topic><topic>Propagation</topic><topic>Propagation losses</topic><topic>Social networking (online)</topic><topic>tag propagation</topic><topic>Tagging</topic><topic>Tags</topic><topic>Training</topic><topic>Training data</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yi-Hsun</creatorcontrib><creatorcontrib>Chen, Homer H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Yi-Hsun</au><au>Chen, Homer H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>1605</spage><epage>1616</epage><pages>1605-1616</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3001521</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2379-0741</orcidid><orcidid>https://orcid.org/0000-0002-8795-1911</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2021, Vol.23, p.1605-1616
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2533489231
source IEEE Electronic Library (IEL)
subjects Context
cost-sensitive learning
Learning
Links
Marking
Multimedia systems
Music
Music auto-tagging
music information retrieval
Musical performances
Performance enhancement
Propagation
Propagation losses
Social networking (online)
tag propagation
Tagging
Tags
Training
Training data
Two dimensional models
title Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tag%20Propagation%20and%20Cost-Sensitive%20Learning%20for%20Music%20Auto-Tagging&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lin,%20Yi-Hsun&rft.date=2021&rft.volume=23&rft.spage=1605&rft.epage=1616&rft.pages=1605-1616&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3001521&rft_dat=%3Cproquest_RIE%3E2533489231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533489231&rft_id=info:pmid/&rft_ieee_id=9113752&rfr_iscdi=true