Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging
The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2021, Vol.23, p.1605-1616 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1616 |
---|---|
container_issue | |
container_start_page | 1605 |
container_title | IEEE transactions on multimedia |
container_volume | 23 |
creator | Lin, Yi-Hsun Chen, Homer H. |
description | The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts. |
doi_str_mv | 10.1109/TMM.2020.3001521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2533489231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9113752</ieee_id><sourcerecordid>2533489231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAc-pMsslujrX4BVsUrOeQbpNli25qsiv4701p8TQvw_POwEPINcIMEfTdarmcceAwEwAoOZ6QCeoCGUBZnuYsOTDNEc7JRUrbzBQSygm5X9mWvsWws60dutBT22_oIqSBvbs-dUP342jtbOy7vqU-RLocU9fQ-TgElqttXl-SM28_k7s6zin5eHxYLZ5Z_fr0spjXrOEaB6Ya79ZizRVvNFZaKV8IC8qChaLMqdrIYu1dY6GsMuIqrtBKoZTiymvPxZTcHu7uYvgeXRrMNoyxzy8Nl0IUleYCMwUHqokhpei82cXuy8Zfg2D2pkw2ZfamzNFUrtwcKp1z7h_XiKKUXPwBv2Riig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533489231</pqid></control><display><type>article</type><title>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Yi-Hsun ; Chen, Homer H.</creator><creatorcontrib>Lin, Yi-Hsun ; Chen, Homer H.</creatorcontrib><description>The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3001521</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Context ; cost-sensitive learning ; Learning ; Links ; Marking ; Multimedia systems ; Music ; Music auto-tagging ; music information retrieval ; Musical performances ; Performance enhancement ; Propagation ; Propagation losses ; Social networking (online) ; tag propagation ; Tagging ; Tags ; Training ; Training data ; Two dimensional models</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.1605-1616</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</citedby><cites>FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</cites><orcidid>0000-0002-2379-0741 ; 0000-0002-8795-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9113752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9113752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Yi-Hsun</creatorcontrib><creatorcontrib>Chen, Homer H.</creatorcontrib><title>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.</description><subject>Context</subject><subject>cost-sensitive learning</subject><subject>Learning</subject><subject>Links</subject><subject>Marking</subject><subject>Multimedia systems</subject><subject>Music</subject><subject>Music auto-tagging</subject><subject>music information retrieval</subject><subject>Musical performances</subject><subject>Performance enhancement</subject><subject>Propagation</subject><subject>Propagation losses</subject><subject>Social networking (online)</subject><subject>tag propagation</subject><subject>Tagging</subject><subject>Tags</subject><subject>Training</subject><subject>Training data</subject><subject>Two dimensional models</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAc-pMsslujrX4BVsUrOeQbpNli25qsiv4701p8TQvw_POwEPINcIMEfTdarmcceAwEwAoOZ6QCeoCGUBZnuYsOTDNEc7JRUrbzBQSygm5X9mWvsWws60dutBT22_oIqSBvbs-dUP342jtbOy7vqU-RLocU9fQ-TgElqttXl-SM28_k7s6zin5eHxYLZ5Z_fr0spjXrOEaB6Ya79ZizRVvNFZaKV8IC8qChaLMqdrIYu1dY6GsMuIqrtBKoZTiymvPxZTcHu7uYvgeXRrMNoyxzy8Nl0IUleYCMwUHqokhpei82cXuy8Zfg2D2pkw2ZfamzNFUrtwcKp1z7h_XiKKUXPwBv2Riig</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lin, Yi-Hsun</creator><creator>Chen, Homer H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2379-0741</orcidid><orcidid>https://orcid.org/0000-0002-8795-1911</orcidid></search><sort><creationdate>2021</creationdate><title>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</title><author>Lin, Yi-Hsun ; Chen, Homer H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6cfeb3b262c918966f43a06a0a0473a08d54bfeca0782c9e8261a5366626f9f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Context</topic><topic>cost-sensitive learning</topic><topic>Learning</topic><topic>Links</topic><topic>Marking</topic><topic>Multimedia systems</topic><topic>Music</topic><topic>Music auto-tagging</topic><topic>music information retrieval</topic><topic>Musical performances</topic><topic>Performance enhancement</topic><topic>Propagation</topic><topic>Propagation losses</topic><topic>Social networking (online)</topic><topic>tag propagation</topic><topic>Tagging</topic><topic>Tags</topic><topic>Training</topic><topic>Training data</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yi-Hsun</creatorcontrib><creatorcontrib>Chen, Homer H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Yi-Hsun</au><au>Chen, Homer H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>1605</spage><epage>1616</epage><pages>1605-1616</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>The performance of music auto-tagging depends on the quality of training data. In practice, the links between songs and tags in the manually labeled training data can be incorrect (false positive) or missing (false negative). In this paper, we propose a cost-sensitive tag propagation learning method to improve auto-tagging. Specifically, we exploit music context to determine similar songs and propagate tags between them. Both propagated tags and original tags are used to optimize the auto-tagging models, and cost-sensitivity is incorporated into the loss function to enhance the robustness by adjusting the weight of relevant ( positive ) links with respect to irrelevant ( negative ) links. The proposed method is tested on three auto-tagging models: 2D-CNN, CRNN, and SampleCNN. The Million Song Dataset is used for training, and four music contexts, artist, playlist, tag, and listener, are used for song similarity measurement. The experimental results show 1) The proposed method can successfully improve the performance of the three auto-tagging models, 2) The cost-sensitive loss function helps reduce the impact of missing tags, and 3) The artist music context is more powerful for tag propagation than the other three music contexts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3001521</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2379-0741</orcidid><orcidid>https://orcid.org/0000-0002-8795-1911</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2021, Vol.23, p.1605-1616 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2533489231 |
source | IEEE Electronic Library (IEL) |
subjects | Context cost-sensitive learning Learning Links Marking Multimedia systems Music Music auto-tagging music information retrieval Musical performances Performance enhancement Propagation Propagation losses Social networking (online) tag propagation Tagging Tags Training Training data Two dimensional models |
title | Tag Propagation and Cost-Sensitive Learning for Music Auto-Tagging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tag%20Propagation%20and%20Cost-Sensitive%20Learning%20for%20Music%20Auto-Tagging&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lin,%20Yi-Hsun&rft.date=2021&rft.volume=23&rft.spage=1605&rft.epage=1616&rft.pages=1605-1616&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3001521&rft_dat=%3Cproquest_RIE%3E2533489231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533489231&rft_id=info:pmid/&rft_ieee_id=9113752&rfr_iscdi=true |