Solid-state reaction process for high-quality organometallic halide perovskite thin film
Recently, a hybrid perovskite material, ABX3 (A= Cs, CH3NH3, NH2CHNH2; B= Pb, Sn; X= Cl, Br, I), has received much attention as an active layer in new-generation solar cells. This material is usually fabricated with either a one-step or a two step process in solution. However, the surface morphology...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2021-08, Vol.227, p.111014, Article 111014 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111014 |
container_title | Solar energy materials and solar cells |
container_volume | 227 |
creator | Hsu, Chien-Chung Yu, Sheng-Min Lee, Kun-Mu Lin, Chuan-Jung Cheng, Hao-Chien Chen, Fu-Rong |
description | Recently, a hybrid perovskite material, ABX3 (A= Cs, CH3NH3, NH2CHNH2; B= Pb, Sn; X= Cl, Br, I), has received much attention as an active layer in new-generation solar cells. This material is usually fabricated with either a one-step or a two step process in solution. However, the surface morphology, nucleation rate and grain growth rate of the CH3NH3PbI3 perovskite light absorber prepared by the solution reaction process (SRP) are hard to control. Here, we show a fast solid-solid reaction process (SSRP), to fabricate ultraflat (roughness of approximately 12 nm) CH3NH3PbI3 perovskite thin films with large grain sizes (~947 nm). The SSRP simply involves directly contacting a lead iodide thin film (PbI2) with methylammonium iodide powder (CH3NH3I) without any chemical reagents at 120°C under a normal atmospheric environment. The SSRP reaction dynamics is investigated by an in situ heating scanning electron microscope (SEM) system. This innovative SSRP is an easy approach for the large-scale fabrication of planar heterojunction perovskite solar cells and allows us to demonstrate a power conversion efficiency of approximately 15.27% (active area of 0.16 cm2).
•Mechanism of solid-solid reaction process (SSRP) has verified with an in-situ heating scanning electron microscopy.•Solid-solid reaction process (SSRP), which to fabricate ultra-flat (roughness is about 12 nm) CH3NH3PbI3 perovskite thin film with large grain size (~ 947 nm).•Solid-solid reaction process (SSRP) is obtained for CH3NH3PbI3 perovskite solar cells with power conversion efficiency of 15.27% (active area 0.16 cm2) and 14.46% (active area 11.25 cm2). |
doi_str_mv | 10.1016/j.solmat.2021.111014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533406693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821000581</els_id><sourcerecordid>2533406693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-722e2357f5ab6643fd6b8116600a96ab6ecb5b67a0519cd14f497fc7b17f04963</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcB1615NW03ggy-YMCFCu5CmibT1LaZSTID8-_NUNeuLhzuOefeD4BbjHKMML_v8-CGUcacIIJzjJPIzsACV2WdUVpX52CBalJmiLDqElyF0COECKdsAb4_3GDbLEQZNfRaqmjdBLfeKR0CNM7Dzm66bLeXg41H6PxGTm7UUQ6DVbBLaqvhVnt3CD82RcTOTtDYYbwGF0YOQd_8zSX4en76XL1m6_eXt9XjOlOUspiVhGhCi9IUsuGcUdPypsKYc4RkzZOmVVM0vJSowLVqMTOsLo0qG1waxGpOl-Buzk037_Y6RNG7vZ9SpSBFqkCc1zRtsXlLeReC10ZsvR2lPwqMxImh6MXMUJwYiplhsj3MNp0-OFjtRVBWT0q31msVRevs_wG_UwB83A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533406693</pqid></control><display><type>article</type><title>Solid-state reaction process for high-quality organometallic halide perovskite thin film</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hsu, Chien-Chung ; Yu, Sheng-Min ; Lee, Kun-Mu ; Lin, Chuan-Jung ; Cheng, Hao-Chien ; Chen, Fu-Rong</creator><creatorcontrib>Hsu, Chien-Chung ; Yu, Sheng-Min ; Lee, Kun-Mu ; Lin, Chuan-Jung ; Cheng, Hao-Chien ; Chen, Fu-Rong</creatorcontrib><description>Recently, a hybrid perovskite material, ABX3 (A= Cs, CH3NH3, NH2CHNH2; B= Pb, Sn; X= Cl, Br, I), has received much attention as an active layer in new-generation solar cells. This material is usually fabricated with either a one-step or a two step process in solution. However, the surface morphology, nucleation rate and grain growth rate of the CH3NH3PbI3 perovskite light absorber prepared by the solution reaction process (SRP) are hard to control. Here, we show a fast solid-solid reaction process (SSRP), to fabricate ultraflat (roughness of approximately 12 nm) CH3NH3PbI3 perovskite thin films with large grain sizes (~947 nm). The SSRP simply involves directly contacting a lead iodide thin film (PbI2) with methylammonium iodide powder (CH3NH3I) without any chemical reagents at 120°C under a normal atmospheric environment. The SSRP reaction dynamics is investigated by an in situ heating scanning electron microscope (SEM) system. This innovative SSRP is an easy approach for the large-scale fabrication of planar heterojunction perovskite solar cells and allows us to demonstrate a power conversion efficiency of approximately 15.27% (active area of 0.16 cm2).
•Mechanism of solid-solid reaction process (SSRP) has verified with an in-situ heating scanning electron microscopy.•Solid-solid reaction process (SSRP), which to fabricate ultra-flat (roughness is about 12 nm) CH3NH3PbI3 perovskite thin film with large grain size (~ 947 nm).•Solid-solid reaction process (SSRP) is obtained for CH3NH3PbI3 perovskite solar cells with power conversion efficiency of 15.27% (active area 0.16 cm2) and 14.46% (active area 11.25 cm2).</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CH3NH3PbI3 ; Energy conversion efficiency ; Fabrication ; Grain growth ; Grain size ; Growth rate ; Heterojunctions ; In situ ; Iodides ; Large grain ; Lead ; Morphology ; Nucleation ; Perovskites ; Photovoltaic cells ; Reagents ; Roughness ; Scanning electron microscopy ; Solar cells ; Solid-solid reaction process (SSRP) ; Thin films ; Tin</subject><ispartof>Solar energy materials and solar cells, 2021-08, Vol.227, p.111014, Article 111014</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-722e2357f5ab6643fd6b8116600a96ab6ecb5b67a0519cd14f497fc7b17f04963</citedby><cites>FETCH-LOGICAL-c334t-722e2357f5ab6643fd6b8116600a96ab6ecb5b67a0519cd14f497fc7b17f04963</cites><orcidid>0000-0002-0909-1848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hsu, Chien-Chung</creatorcontrib><creatorcontrib>Yu, Sheng-Min</creatorcontrib><creatorcontrib>Lee, Kun-Mu</creatorcontrib><creatorcontrib>Lin, Chuan-Jung</creatorcontrib><creatorcontrib>Cheng, Hao-Chien</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><title>Solid-state reaction process for high-quality organometallic halide perovskite thin film</title><title>Solar energy materials and solar cells</title><description>Recently, a hybrid perovskite material, ABX3 (A= Cs, CH3NH3, NH2CHNH2; B= Pb, Sn; X= Cl, Br, I), has received much attention as an active layer in new-generation solar cells. This material is usually fabricated with either a one-step or a two step process in solution. However, the surface morphology, nucleation rate and grain growth rate of the CH3NH3PbI3 perovskite light absorber prepared by the solution reaction process (SRP) are hard to control. Here, we show a fast solid-solid reaction process (SSRP), to fabricate ultraflat (roughness of approximately 12 nm) CH3NH3PbI3 perovskite thin films with large grain sizes (~947 nm). The SSRP simply involves directly contacting a lead iodide thin film (PbI2) with methylammonium iodide powder (CH3NH3I) without any chemical reagents at 120°C under a normal atmospheric environment. The SSRP reaction dynamics is investigated by an in situ heating scanning electron microscope (SEM) system. This innovative SSRP is an easy approach for the large-scale fabrication of planar heterojunction perovskite solar cells and allows us to demonstrate a power conversion efficiency of approximately 15.27% (active area of 0.16 cm2).
•Mechanism of solid-solid reaction process (SSRP) has verified with an in-situ heating scanning electron microscopy.•Solid-solid reaction process (SSRP), which to fabricate ultra-flat (roughness is about 12 nm) CH3NH3PbI3 perovskite thin film with large grain size (~ 947 nm).•Solid-solid reaction process (SSRP) is obtained for CH3NH3PbI3 perovskite solar cells with power conversion efficiency of 15.27% (active area 0.16 cm2) and 14.46% (active area 11.25 cm2).</description><subject>CH3NH3PbI3</subject><subject>Energy conversion efficiency</subject><subject>Fabrication</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Growth rate</subject><subject>Heterojunctions</subject><subject>In situ</subject><subject>Iodides</subject><subject>Large grain</subject><subject>Lead</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Reagents</subject><subject>Roughness</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Solid-solid reaction process (SSRP)</subject><subject>Thin films</subject><subject>Tin</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcB1615NW03ggy-YMCFCu5CmibT1LaZSTID8-_NUNeuLhzuOefeD4BbjHKMML_v8-CGUcacIIJzjJPIzsACV2WdUVpX52CBalJmiLDqElyF0COECKdsAb4_3GDbLEQZNfRaqmjdBLfeKR0CNM7Dzm66bLeXg41H6PxGTm7UUQ6DVbBLaqvhVnt3CD82RcTOTtDYYbwGF0YOQd_8zSX4en76XL1m6_eXt9XjOlOUspiVhGhCi9IUsuGcUdPypsKYc4RkzZOmVVM0vJSowLVqMTOsLo0qG1waxGpOl-Buzk037_Y6RNG7vZ9SpSBFqkCc1zRtsXlLeReC10ZsvR2lPwqMxImh6MXMUJwYiplhsj3MNp0-OFjtRVBWT0q31msVRevs_wG_UwB83A</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Hsu, Chien-Chung</creator><creator>Yu, Sheng-Min</creator><creator>Lee, Kun-Mu</creator><creator>Lin, Chuan-Jung</creator><creator>Cheng, Hao-Chien</creator><creator>Chen, Fu-Rong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0909-1848</orcidid></search><sort><creationdate>20210801</creationdate><title>Solid-state reaction process for high-quality organometallic halide perovskite thin film</title><author>Hsu, Chien-Chung ; Yu, Sheng-Min ; Lee, Kun-Mu ; Lin, Chuan-Jung ; Cheng, Hao-Chien ; Chen, Fu-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-722e2357f5ab6643fd6b8116600a96ab6ecb5b67a0519cd14f497fc7b17f04963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CH3NH3PbI3</topic><topic>Energy conversion efficiency</topic><topic>Fabrication</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Growth rate</topic><topic>Heterojunctions</topic><topic>In situ</topic><topic>Iodides</topic><topic>Large grain</topic><topic>Lead</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Reagents</topic><topic>Roughness</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Solid-solid reaction process (SSRP)</topic><topic>Thin films</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chien-Chung</creatorcontrib><creatorcontrib>Yu, Sheng-Min</creatorcontrib><creatorcontrib>Lee, Kun-Mu</creatorcontrib><creatorcontrib>Lin, Chuan-Jung</creatorcontrib><creatorcontrib>Cheng, Hao-Chien</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chien-Chung</au><au>Yu, Sheng-Min</au><au>Lee, Kun-Mu</au><au>Lin, Chuan-Jung</au><au>Cheng, Hao-Chien</au><au>Chen, Fu-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state reaction process for high-quality organometallic halide perovskite thin film</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>227</volume><spage>111014</spage><pages>111014-</pages><artnum>111014</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Recently, a hybrid perovskite material, ABX3 (A= Cs, CH3NH3, NH2CHNH2; B= Pb, Sn; X= Cl, Br, I), has received much attention as an active layer in new-generation solar cells. This material is usually fabricated with either a one-step or a two step process in solution. However, the surface morphology, nucleation rate and grain growth rate of the CH3NH3PbI3 perovskite light absorber prepared by the solution reaction process (SRP) are hard to control. Here, we show a fast solid-solid reaction process (SSRP), to fabricate ultraflat (roughness of approximately 12 nm) CH3NH3PbI3 perovskite thin films with large grain sizes (~947 nm). The SSRP simply involves directly contacting a lead iodide thin film (PbI2) with methylammonium iodide powder (CH3NH3I) without any chemical reagents at 120°C under a normal atmospheric environment. The SSRP reaction dynamics is investigated by an in situ heating scanning electron microscope (SEM) system. This innovative SSRP is an easy approach for the large-scale fabrication of planar heterojunction perovskite solar cells and allows us to demonstrate a power conversion efficiency of approximately 15.27% (active area of 0.16 cm2).
•Mechanism of solid-solid reaction process (SSRP) has verified with an in-situ heating scanning electron microscopy.•Solid-solid reaction process (SSRP), which to fabricate ultra-flat (roughness is about 12 nm) CH3NH3PbI3 perovskite thin film with large grain size (~ 947 nm).•Solid-solid reaction process (SSRP) is obtained for CH3NH3PbI3 perovskite solar cells with power conversion efficiency of 15.27% (active area 0.16 cm2) and 14.46% (active area 11.25 cm2).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111014</doi><orcidid>https://orcid.org/0000-0002-0909-1848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-08, Vol.227, p.111014, Article 111014 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2533406693 |
source | Elsevier ScienceDirect Journals Complete |
subjects | CH3NH3PbI3 Energy conversion efficiency Fabrication Grain growth Grain size Growth rate Heterojunctions In situ Iodides Large grain Lead Morphology Nucleation Perovskites Photovoltaic cells Reagents Roughness Scanning electron microscopy Solar cells Solid-solid reaction process (SSRP) Thin films Tin |
title | Solid-state reaction process for high-quality organometallic halide perovskite thin film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20reaction%20process%20for%20high-quality%20organometallic%20halide%20perovskite%20thin%20film&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Hsu,%20Chien-Chung&rft.date=2021-08-01&rft.volume=227&rft.spage=111014&rft.pages=111014-&rft.artnum=111014&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111014&rft_dat=%3Cproquest_cross%3E2533406693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533406693&rft_id=info:pmid/&rft_els_id=S0927024821000581&rfr_iscdi=true |