Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation

Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2021-08, Vol.227, p.111096, Article 111096
Hauptverfasser: Gabriel Tomulescu, Andrei, Nicoleta Leonat, Lucia, Neațu, Florentina, Stancu, Viorica, Toma, Vasilica, Derbali, Sarah, Neațu, Ștefan, Mihai Rostas, Arpad, Beșleagă, Cristina, Pătru, Roxana, Pintilie, Ioana, Florea, Mihaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111096
container_title Solar energy materials and solar cells
container_volume 227
creator Gabriel Tomulescu, Andrei
Nicoleta Leonat, Lucia
Neațu, Florentina
Stancu, Viorica
Toma, Vasilica
Derbali, Sarah
Neațu, Ștefan
Mihai Rostas, Arpad
Beșleagă, Cristina
Pătru, Roxana
Pintilie, Ioana
Florea, Mihaela
description Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%. [Display omitted] •Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.
doi_str_mv 10.1016/j.solmat.2021.111096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533406228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821001379</els_id><sourcerecordid>2533406228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuA69bc2qQbQYbxAgMi6DqkaeKktk1NMgP16a3UtavDD_-F8wFwjVGOES5v2zz6rlcpJ4jgHGOMqvIErLDgVUZpJU7BClWEZ4gwcQ4uYmwRQqSkbAVet8NeDdoNHzAmVbvOpQl6C_dTHVwDRxP8MX66ZOA8oQLUpusirCfoeteob9-5Qw_doH0YfVDJ-eESnFnVRXP1d9fg_WH7tnnKdi-Pz5v7XaYpZSkjpRUNpwVBhUWME44bwqu6UAQpxAXDllGhbImxVrOqMdW6UUyIosBVZQ1dg5uldwz-62Bikq0_hGGelKSYJ1BJiJhdbHHp4GMMxsoxuF6FSWIkf-HJVi7w5C88ucCbY3dLzMwfHJ0JMmpnBm0aF4xOsvHu_4IfLD15-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533406228</pqid></control><display><type>article</type><title>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gabriel Tomulescu, Andrei ; Nicoleta Leonat, Lucia ; Neațu, Florentina ; Stancu, Viorica ; Toma, Vasilica ; Derbali, Sarah ; Neațu, Ștefan ; Mihai Rostas, Arpad ; Beșleagă, Cristina ; Pătru, Roxana ; Pintilie, Ioana ; Florea, Mihaela</creator><creatorcontrib>Gabriel Tomulescu, Andrei ; Nicoleta Leonat, Lucia ; Neațu, Florentina ; Stancu, Viorica ; Toma, Vasilica ; Derbali, Sarah ; Neațu, Ștefan ; Mihai Rostas, Arpad ; Beșleagă, Cristina ; Pătru, Roxana ; Pintilie, Ioana ; Florea, Mihaela</creatorcontrib><description>Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%. [Display omitted] •Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111096</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic force microscopy ; Doping ; Electron paramagnetic resonance ; Electron spin resonance ; Energy conversion efficiency ; Globularity factor ; Imidazolium ; Mathematical analysis ; Microscopy ; Perovskite solar cells ; Perovskites ; Photoelectrons ; Photovoltaic cells ; Photovoltaics ; Recombination ; Scanning electron microscopy ; Solar cells ; Spectroscopy ; Stability ; X-ray diffraction</subject><ispartof>Solar energy materials and solar cells, 2021-08, Vol.227, p.111096, Article 111096</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</citedby><cites>FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</cites><orcidid>0000-0001-8190-9512 ; 0000-0002-6612-6090 ; 0000-0003-1663-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111096$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Gabriel Tomulescu, Andrei</creatorcontrib><creatorcontrib>Nicoleta Leonat, Lucia</creatorcontrib><creatorcontrib>Neațu, Florentina</creatorcontrib><creatorcontrib>Stancu, Viorica</creatorcontrib><creatorcontrib>Toma, Vasilica</creatorcontrib><creatorcontrib>Derbali, Sarah</creatorcontrib><creatorcontrib>Neațu, Ștefan</creatorcontrib><creatorcontrib>Mihai Rostas, Arpad</creatorcontrib><creatorcontrib>Beșleagă, Cristina</creatorcontrib><creatorcontrib>Pătru, Roxana</creatorcontrib><creatorcontrib>Pintilie, Ioana</creatorcontrib><creatorcontrib>Florea, Mihaela</creatorcontrib><title>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</title><title>Solar energy materials and solar cells</title><description>Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%. [Display omitted] •Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.</description><subject>Atomic force microscopy</subject><subject>Doping</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Energy conversion efficiency</subject><subject>Globularity factor</subject><subject>Imidazolium</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Recombination</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>X-ray diffraction</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuA69bc2qQbQYbxAgMi6DqkaeKktk1NMgP16a3UtavDD_-F8wFwjVGOES5v2zz6rlcpJ4jgHGOMqvIErLDgVUZpJU7BClWEZ4gwcQ4uYmwRQqSkbAVet8NeDdoNHzAmVbvOpQl6C_dTHVwDRxP8MX66ZOA8oQLUpusirCfoeteob9-5Qw_doH0YfVDJ-eESnFnVRXP1d9fg_WH7tnnKdi-Pz5v7XaYpZSkjpRUNpwVBhUWME44bwqu6UAQpxAXDllGhbImxVrOqMdW6UUyIosBVZQ1dg5uldwz-62Bikq0_hGGelKSYJ1BJiJhdbHHp4GMMxsoxuF6FSWIkf-HJVi7w5C88ucCbY3dLzMwfHJ0JMmpnBm0aF4xOsvHu_4IfLD15-Q</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gabriel Tomulescu, Andrei</creator><creator>Nicoleta Leonat, Lucia</creator><creator>Neațu, Florentina</creator><creator>Stancu, Viorica</creator><creator>Toma, Vasilica</creator><creator>Derbali, Sarah</creator><creator>Neațu, Ștefan</creator><creator>Mihai Rostas, Arpad</creator><creator>Beșleagă, Cristina</creator><creator>Pătru, Roxana</creator><creator>Pintilie, Ioana</creator><creator>Florea, Mihaela</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8190-9512</orcidid><orcidid>https://orcid.org/0000-0002-6612-6090</orcidid><orcidid>https://orcid.org/0000-0003-1663-8343</orcidid></search><sort><creationdate>20210801</creationdate><title>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</title><author>Gabriel Tomulescu, Andrei ; Nicoleta Leonat, Lucia ; Neațu, Florentina ; Stancu, Viorica ; Toma, Vasilica ; Derbali, Sarah ; Neațu, Ștefan ; Mihai Rostas, Arpad ; Beșleagă, Cristina ; Pătru, Roxana ; Pintilie, Ioana ; Florea, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Doping</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Energy conversion efficiency</topic><topic>Globularity factor</topic><topic>Imidazolium</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Recombination</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabriel Tomulescu, Andrei</creatorcontrib><creatorcontrib>Nicoleta Leonat, Lucia</creatorcontrib><creatorcontrib>Neațu, Florentina</creatorcontrib><creatorcontrib>Stancu, Viorica</creatorcontrib><creatorcontrib>Toma, Vasilica</creatorcontrib><creatorcontrib>Derbali, Sarah</creatorcontrib><creatorcontrib>Neațu, Ștefan</creatorcontrib><creatorcontrib>Mihai Rostas, Arpad</creatorcontrib><creatorcontrib>Beșleagă, Cristina</creatorcontrib><creatorcontrib>Pătru, Roxana</creatorcontrib><creatorcontrib>Pintilie, Ioana</creatorcontrib><creatorcontrib>Florea, Mihaela</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriel Tomulescu, Andrei</au><au>Nicoleta Leonat, Lucia</au><au>Neațu, Florentina</au><au>Stancu, Viorica</au><au>Toma, Vasilica</au><au>Derbali, Sarah</au><au>Neațu, Ștefan</au><au>Mihai Rostas, Arpad</au><au>Beșleagă, Cristina</au><au>Pătru, Roxana</au><au>Pintilie, Ioana</au><au>Florea, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>227</volume><spage>111096</spage><pages>111096-</pages><artnum>111096</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%. [Display omitted] •Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111096</doi><orcidid>https://orcid.org/0000-0001-8190-9512</orcidid><orcidid>https://orcid.org/0000-0002-6612-6090</orcidid><orcidid>https://orcid.org/0000-0003-1663-8343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-08, Vol.227, p.111096, Article 111096
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2533406228
source ScienceDirect Journals (5 years ago - present)
subjects Atomic force microscopy
Doping
Electron paramagnetic resonance
Electron spin resonance
Energy conversion efficiency
Globularity factor
Imidazolium
Mathematical analysis
Microscopy
Perovskite solar cells
Perovskites
Photoelectrons
Photovoltaic cells
Photovoltaics
Recombination
Scanning electron microscopy
Solar cells
Spectroscopy
Stability
X-ray diffraction
title Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20stability%20of%20hybrid%20perovskite%20solar%20cells%20by%20imidazolium%20incorporation&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Gabriel%20Tomulescu,%20Andrei&rft.date=2021-08-01&rft.volume=227&rft.spage=111096&rft.pages=111096-&rft.artnum=111096&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111096&rft_dat=%3Cproquest_cross%3E2533406228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533406228&rft_id=info:pmid/&rft_els_id=S0927024821001379&rfr_iscdi=true