Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation
Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to im...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2021-08, Vol.227, p.111096, Article 111096 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111096 |
container_title | Solar energy materials and solar cells |
container_volume | 227 |
creator | Gabriel Tomulescu, Andrei Nicoleta Leonat, Lucia Neațu, Florentina Stancu, Viorica Toma, Vasilica Derbali, Sarah Neațu, Ștefan Mihai Rostas, Arpad Beșleagă, Cristina Pătru, Roxana Pintilie, Ioana Florea, Mihaela |
description | Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.
[Display omitted]
•Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration. |
doi_str_mv | 10.1016/j.solmat.2021.111096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533406228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821001379</els_id><sourcerecordid>2533406228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuA69bc2qQbQYbxAgMi6DqkaeKktk1NMgP16a3UtavDD_-F8wFwjVGOES5v2zz6rlcpJ4jgHGOMqvIErLDgVUZpJU7BClWEZ4gwcQ4uYmwRQqSkbAVet8NeDdoNHzAmVbvOpQl6C_dTHVwDRxP8MX66ZOA8oQLUpusirCfoeteob9-5Qw_doH0YfVDJ-eESnFnVRXP1d9fg_WH7tnnKdi-Pz5v7XaYpZSkjpRUNpwVBhUWME44bwqu6UAQpxAXDllGhbImxVrOqMdW6UUyIosBVZQ1dg5uldwz-62Bikq0_hGGelKSYJ1BJiJhdbHHp4GMMxsoxuF6FSWIkf-HJVi7w5C88ucCbY3dLzMwfHJ0JMmpnBm0aF4xOsvHu_4IfLD15-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533406228</pqid></control><display><type>article</type><title>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gabriel Tomulescu, Andrei ; Nicoleta Leonat, Lucia ; Neațu, Florentina ; Stancu, Viorica ; Toma, Vasilica ; Derbali, Sarah ; Neațu, Ștefan ; Mihai Rostas, Arpad ; Beșleagă, Cristina ; Pătru, Roxana ; Pintilie, Ioana ; Florea, Mihaela</creator><creatorcontrib>Gabriel Tomulescu, Andrei ; Nicoleta Leonat, Lucia ; Neațu, Florentina ; Stancu, Viorica ; Toma, Vasilica ; Derbali, Sarah ; Neațu, Ștefan ; Mihai Rostas, Arpad ; Beșleagă, Cristina ; Pătru, Roxana ; Pintilie, Ioana ; Florea, Mihaela</creatorcontrib><description>Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.
[Display omitted]
•Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111096</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic force microscopy ; Doping ; Electron paramagnetic resonance ; Electron spin resonance ; Energy conversion efficiency ; Globularity factor ; Imidazolium ; Mathematical analysis ; Microscopy ; Perovskite solar cells ; Perovskites ; Photoelectrons ; Photovoltaic cells ; Photovoltaics ; Recombination ; Scanning electron microscopy ; Solar cells ; Spectroscopy ; Stability ; X-ray diffraction</subject><ispartof>Solar energy materials and solar cells, 2021-08, Vol.227, p.111096, Article 111096</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</citedby><cites>FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</cites><orcidid>0000-0001-8190-9512 ; 0000-0002-6612-6090 ; 0000-0003-1663-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111096$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Gabriel Tomulescu, Andrei</creatorcontrib><creatorcontrib>Nicoleta Leonat, Lucia</creatorcontrib><creatorcontrib>Neațu, Florentina</creatorcontrib><creatorcontrib>Stancu, Viorica</creatorcontrib><creatorcontrib>Toma, Vasilica</creatorcontrib><creatorcontrib>Derbali, Sarah</creatorcontrib><creatorcontrib>Neațu, Ștefan</creatorcontrib><creatorcontrib>Mihai Rostas, Arpad</creatorcontrib><creatorcontrib>Beșleagă, Cristina</creatorcontrib><creatorcontrib>Pătru, Roxana</creatorcontrib><creatorcontrib>Pintilie, Ioana</creatorcontrib><creatorcontrib>Florea, Mihaela</creatorcontrib><title>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</title><title>Solar energy materials and solar cells</title><description>Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.
[Display omitted]
•Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.</description><subject>Atomic force microscopy</subject><subject>Doping</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Energy conversion efficiency</subject><subject>Globularity factor</subject><subject>Imidazolium</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Recombination</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>X-ray diffraction</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuA69bc2qQbQYbxAgMi6DqkaeKktk1NMgP16a3UtavDD_-F8wFwjVGOES5v2zz6rlcpJ4jgHGOMqvIErLDgVUZpJU7BClWEZ4gwcQ4uYmwRQqSkbAVet8NeDdoNHzAmVbvOpQl6C_dTHVwDRxP8MX66ZOA8oQLUpusirCfoeteob9-5Qw_doH0YfVDJ-eESnFnVRXP1d9fg_WH7tnnKdi-Pz5v7XaYpZSkjpRUNpwVBhUWME44bwqu6UAQpxAXDllGhbImxVrOqMdW6UUyIosBVZQ1dg5uldwz-62Bikq0_hGGelKSYJ1BJiJhdbHHp4GMMxsoxuF6FSWIkf-HJVi7w5C88ucCbY3dLzMwfHJ0JMmpnBm0aF4xOsvHu_4IfLD15-Q</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gabriel Tomulescu, Andrei</creator><creator>Nicoleta Leonat, Lucia</creator><creator>Neațu, Florentina</creator><creator>Stancu, Viorica</creator><creator>Toma, Vasilica</creator><creator>Derbali, Sarah</creator><creator>Neațu, Ștefan</creator><creator>Mihai Rostas, Arpad</creator><creator>Beșleagă, Cristina</creator><creator>Pătru, Roxana</creator><creator>Pintilie, Ioana</creator><creator>Florea, Mihaela</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8190-9512</orcidid><orcidid>https://orcid.org/0000-0002-6612-6090</orcidid><orcidid>https://orcid.org/0000-0003-1663-8343</orcidid></search><sort><creationdate>20210801</creationdate><title>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</title><author>Gabriel Tomulescu, Andrei ; Nicoleta Leonat, Lucia ; Neațu, Florentina ; Stancu, Viorica ; Toma, Vasilica ; Derbali, Sarah ; Neațu, Ștefan ; Mihai Rostas, Arpad ; Beșleagă, Cristina ; Pătru, Roxana ; Pintilie, Ioana ; Florea, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-26f8d735205f047271d279b5a20a07841f438af611ca841b13ccda48855199fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Doping</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Energy conversion efficiency</topic><topic>Globularity factor</topic><topic>Imidazolium</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Recombination</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabriel Tomulescu, Andrei</creatorcontrib><creatorcontrib>Nicoleta Leonat, Lucia</creatorcontrib><creatorcontrib>Neațu, Florentina</creatorcontrib><creatorcontrib>Stancu, Viorica</creatorcontrib><creatorcontrib>Toma, Vasilica</creatorcontrib><creatorcontrib>Derbali, Sarah</creatorcontrib><creatorcontrib>Neațu, Ștefan</creatorcontrib><creatorcontrib>Mihai Rostas, Arpad</creatorcontrib><creatorcontrib>Beșleagă, Cristina</creatorcontrib><creatorcontrib>Pătru, Roxana</creatorcontrib><creatorcontrib>Pintilie, Ioana</creatorcontrib><creatorcontrib>Florea, Mihaela</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriel Tomulescu, Andrei</au><au>Nicoleta Leonat, Lucia</au><au>Neațu, Florentina</au><au>Stancu, Viorica</au><au>Toma, Vasilica</au><au>Derbali, Sarah</au><au>Neațu, Ștefan</au><au>Mihai Rostas, Arpad</au><au>Beșleagă, Cristina</au><au>Pătru, Roxana</au><au>Pintilie, Ioana</au><au>Florea, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>227</volume><spage>111096</spage><pages>111096-</pages><artnum>111096</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the "globularity factor" are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.
[Display omitted]
•Imidazolium (IM) incorporation in hybrid perovskite solar cells increases the stability of the device.•The amount of IM inserted in the perovskite play a key role on the film properties.•The optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.•XPS measurements on IM containing solar cells, revealed a considerable reduced iodine migration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111096</doi><orcidid>https://orcid.org/0000-0001-8190-9512</orcidid><orcidid>https://orcid.org/0000-0002-6612-6090</orcidid><orcidid>https://orcid.org/0000-0003-1663-8343</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-08, Vol.227, p.111096, Article 111096 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2533406228 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Atomic force microscopy Doping Electron paramagnetic resonance Electron spin resonance Energy conversion efficiency Globularity factor Imidazolium Mathematical analysis Microscopy Perovskite solar cells Perovskites Photoelectrons Photovoltaic cells Photovoltaics Recombination Scanning electron microscopy Solar cells Spectroscopy Stability X-ray diffraction |
title | Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20stability%20of%20hybrid%20perovskite%20solar%20cells%20by%20imidazolium%20incorporation&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Gabriel%20Tomulescu,%20Andrei&rft.date=2021-08-01&rft.volume=227&rft.spage=111096&rft.pages=111096-&rft.artnum=111096&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111096&rft_dat=%3Cproquest_cross%3E2533406228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533406228&rft_id=info:pmid/&rft_els_id=S0927024821001379&rfr_iscdi=true |