A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory

An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-12, Vol.11 (23), p.6803
Hauptverfasser: Kim, Jiwoo, Shin, Sanghun, Lee, Hee Soo, Oh, Kyong Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 6803
container_title Sustainability
container_volume 11
creator Kim, Jiwoo
Shin, Sanghun
Lee, Hee Soo
Oh, Kyong Joo
description An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies for IPO stocks are relatively scarce. This paper develops a machine learning investment strategy for IPO stocks based on rough set theory and a genetic algorithm (GA-rough set theory). To reduce issues of information asymmetry, we use nonfinancial data that are publicly available to individual and institutional investors in the IPO process. Based on the rule sets generated from the training sets, we conduct 120 tests with various conditions involving the target days and the partition of the training and testing sets, and we find excess returns of the constructed portfolios compared to the benchmark portfolios. Investors in IPO stocks can formulate more efficient investment strategies using our system. In this sense, the system developed in this paper contributes to the efficiency of financial markets and helps achieve sustained economic growth.
doi_str_mv 10.3390/su11236803
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533334951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533334951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8d913097d24cd5619ab4d798fd5c630a210f096d8f8ca3f3fd5a58dd6559995e3</originalsourceid><addsrcrecordid>eNpNUF1LwzAUDaLgmHvxFwR8E6pJ79I2j2XoNpxsuO25xHysnV0yk_Rh_96OCXpe7uFyPuAgdE_JEwAnz6GjNIWsIHCFBinJaUIJI9f_-C0ahbAnPQAop9kAyRK_C1k3VuOFFt42dodXzkfj2sbhsm2dFLFxFq9PIeoDNs7j-WoZcGPxm_Na2N7vv3QMeBvO5mmZfLhuV-O1jnhTa-dPd-jGiDbo0e8dou3ry2YySxbL6XxSLhKZchaTQnEKhOcqHUvFMsrF51jlvDCKyQyISCkxhGeqMIUUYKD_C1YolTHGOWcahujhknv07rvTIVZ713nbV1Ypgx5jzmiveryopHcheG2qo28Owp8qSqrzjtXfjvADpDdjrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533334951</pqid></control><display><type>article</type><title>A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Jiwoo ; Shin, Sanghun ; Lee, Hee Soo ; Oh, Kyong Joo</creator><creatorcontrib>Kim, Jiwoo ; Shin, Sanghun ; Lee, Hee Soo ; Oh, Kyong Joo</creatorcontrib><description>An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies for IPO stocks are relatively scarce. This paper develops a machine learning investment strategy for IPO stocks based on rough set theory and a genetic algorithm (GA-rough set theory). To reduce issues of information asymmetry, we use nonfinancial data that are publicly available to individual and institutional investors in the IPO process. Based on the rule sets generated from the training sets, we conduct 120 tests with various conditions involving the target days and the partition of the training and testing sets, and we find excess returns of the constructed portfolios compared to the benchmark portfolios. Investors in IPO stocks can formulate more efficient investment strategies using our system. In this sense, the system developed in this paper contributes to the efficiency of financial markets and helps achieve sustained economic growth.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su11236803</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Economic development ; Economic growth ; Efficiency ; Efficient markets ; Financial instruments ; Genetic algorithms ; Initial public offerings ; Institutional investments ; Investment policy ; Learning algorithms ; Machine learning ; New stock market listings ; Portfolio management ; Portfolios ; Prices ; Securities markets ; Set theory ; Stock exchanges ; Sustainability</subject><ispartof>Sustainability, 2019-12, Vol.11 (23), p.6803</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8d913097d24cd5619ab4d798fd5c630a210f096d8f8ca3f3fd5a58dd6559995e3</citedby><cites>FETCH-LOGICAL-c295t-8d913097d24cd5619ab4d798fd5c630a210f096d8f8ca3f3fd5a58dd6559995e3</cites><orcidid>0000-0002-6140-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Jiwoo</creatorcontrib><creatorcontrib>Shin, Sanghun</creatorcontrib><creatorcontrib>Lee, Hee Soo</creatorcontrib><creatorcontrib>Oh, Kyong Joo</creatorcontrib><title>A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory</title><title>Sustainability</title><description>An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies for IPO stocks are relatively scarce. This paper develops a machine learning investment strategy for IPO stocks based on rough set theory and a genetic algorithm (GA-rough set theory). To reduce issues of information asymmetry, we use nonfinancial data that are publicly available to individual and institutional investors in the IPO process. Based on the rule sets generated from the training sets, we conduct 120 tests with various conditions involving the target days and the partition of the training and testing sets, and we find excess returns of the constructed portfolios compared to the benchmark portfolios. Investors in IPO stocks can formulate more efficient investment strategies using our system. In this sense, the system developed in this paper contributes to the efficiency of financial markets and helps achieve sustained economic growth.</description><subject>Approximation</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Efficiency</subject><subject>Efficient markets</subject><subject>Financial instruments</subject><subject>Genetic algorithms</subject><subject>Initial public offerings</subject><subject>Institutional investments</subject><subject>Investment policy</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>New stock market listings</subject><subject>Portfolio management</subject><subject>Portfolios</subject><subject>Prices</subject><subject>Securities markets</subject><subject>Set theory</subject><subject>Stock exchanges</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUF1LwzAUDaLgmHvxFwR8E6pJ79I2j2XoNpxsuO25xHysnV0yk_Rh_96OCXpe7uFyPuAgdE_JEwAnz6GjNIWsIHCFBinJaUIJI9f_-C0ahbAnPQAop9kAyRK_C1k3VuOFFt42dodXzkfj2sbhsm2dFLFxFq9PIeoDNs7j-WoZcGPxm_Na2N7vv3QMeBvO5mmZfLhuV-O1jnhTa-dPd-jGiDbo0e8dou3ry2YySxbL6XxSLhKZchaTQnEKhOcqHUvFMsrF51jlvDCKyQyISCkxhGeqMIUUYKD_C1YolTHGOWcahujhknv07rvTIVZ713nbV1Ypgx5jzmiveryopHcheG2qo28Owp8qSqrzjtXfjvADpDdjrA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kim, Jiwoo</creator><creator>Shin, Sanghun</creator><creator>Lee, Hee Soo</creator><creator>Oh, Kyong Joo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6140-5592</orcidid></search><sort><creationdate>20191201</creationdate><title>A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory</title><author>Kim, Jiwoo ; Shin, Sanghun ; Lee, Hee Soo ; Oh, Kyong Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8d913097d24cd5619ab4d798fd5c630a210f096d8f8ca3f3fd5a58dd6559995e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Efficiency</topic><topic>Efficient markets</topic><topic>Financial instruments</topic><topic>Genetic algorithms</topic><topic>Initial public offerings</topic><topic>Institutional investments</topic><topic>Investment policy</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>New stock market listings</topic><topic>Portfolio management</topic><topic>Portfolios</topic><topic>Prices</topic><topic>Securities markets</topic><topic>Set theory</topic><topic>Stock exchanges</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jiwoo</creatorcontrib><creatorcontrib>Shin, Sanghun</creatorcontrib><creatorcontrib>Lee, Hee Soo</creatorcontrib><creatorcontrib>Oh, Kyong Joo</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jiwoo</au><au>Shin, Sanghun</au><au>Lee, Hee Soo</au><au>Oh, Kyong Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory</atitle><jtitle>Sustainability</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>11</volume><issue>23</issue><spage>6803</spage><pages>6803-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies for IPO stocks are relatively scarce. This paper develops a machine learning investment strategy for IPO stocks based on rough set theory and a genetic algorithm (GA-rough set theory). To reduce issues of information asymmetry, we use nonfinancial data that are publicly available to individual and institutional investors in the IPO process. Based on the rule sets generated from the training sets, we conduct 120 tests with various conditions involving the target days and the partition of the training and testing sets, and we find excess returns of the constructed portfolios compared to the benchmark portfolios. Investors in IPO stocks can formulate more efficient investment strategies using our system. In this sense, the system developed in this paper contributes to the efficiency of financial markets and helps achieve sustained economic growth.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su11236803</doi><orcidid>https://orcid.org/0000-0002-6140-5592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2019-12, Vol.11 (23), p.6803
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2533334951
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Economic development
Economic growth
Efficiency
Efficient markets
Financial instruments
Genetic algorithms
Initial public offerings
Institutional investments
Investment policy
Learning algorithms
Machine learning
New stock market listings
Portfolio management
Portfolios
Prices
Securities markets
Set theory
Stock exchanges
Sustainability
title A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Portfolio%20Allocation%20System%20for%20IPOs%20in%20Korean%20Markets%20Using%20GA-Rough%20Set%20Theory&rft.jtitle=Sustainability&rft.au=Kim,%20Jiwoo&rft.date=2019-12-01&rft.volume=11&rft.issue=23&rft.spage=6803&rft.pages=6803-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su11236803&rft_dat=%3Cproquest_cross%3E2533334951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533334951&rft_id=info:pmid/&rfr_iscdi=true