Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms

Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The gove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multidiscipline modeling in materials and structures 2020-02, Vol.16 (2), p.340-358
Hauptverfasser: Gudekote, Manjunatha, Choudhari, Rajashekhar, Vaidya, Hanumesh, K.V, Prasad, J.U, Viharika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 2
container_start_page 340
container_title Multidiscipline modeling in materials and structures
container_volume 16
creator Gudekote, Manjunatha
Choudhari, Rajashekhar
Vaidya, Hanumesh
K.V, Prasad
J.U, Viharika
description Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller. Findings The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter. Originality/value The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.
doi_str_mv 10.1108/MMMS-01-2019-0006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533145185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533145185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</originalsourceid><addsrcrecordid>eNptkU9LxDAQxYsouK5-AG8Bz9VMk3bboyz-WdjFg3oO2XRis7RNTdIt-zX8xLasCIKneTDv9wbeRNE10FsAmt9tNpvXmEKcUChiSml2Es0gXbA4A2Cnv5qm59GF9ztKOfBsMYu-Vq2ue2wVEquJsu0eVTB7nGRpgrGtJ7YloULSoTM-yDoYRRpUlWyNbyaqswO6uJYDGaNMOZqd7T8qIomvTTdiB4K19BPX2XHlSei3SAYTKlIardFhG8gg96ita_xldKZl7fHqZ86j98eHt-VzvH55Wi3v17FiwEOcl7nk24zxvCzKLMlQAy84y_UiS0BrLiXljOtEqrIo2BYKKNKEJnyUoPJFyubRzTG3c_azRx_EzvauHU-KJGXjjRTyyQVHl3LWe4dadM400h0EUDFVL6bqBQUxVS-m6keGHhls0Mm6_Bf58y32DcsliBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533145185</pqid></control><display><type>article</type><title>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Gudekote, Manjunatha ; Choudhari, Rajashekhar ; Vaidya, Hanumesh ; K.V, Prasad ; J.U, Viharika</creator><creatorcontrib>Gudekote, Manjunatha ; Choudhari, Rajashekhar ; Vaidya, Hanumesh ; K.V, Prasad ; J.U, Viharika</creatorcontrib><description>Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller. Findings The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter. Originality/value The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.</description><identifier>ISSN: 1573-6105</identifier><identifier>EISSN: 1573-6113</identifier><identifier>DOI: 10.1108/MMMS-01-2019-0006</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Biot number ; Dialysis ; Dimensionless analysis ; Exact solutions ; Flow velocity ; Gastrointestinal system ; Gastrointestinal tract ; Heat transfer ; Investigations ; Non-Newtonian fluids ; Parameter estimation ; Powder metallurgy ; Power law ; Reynolds number ; Rheology ; Slip ; Veins &amp; arteries ; Velocity ; Waveforms</subject><ispartof>Multidiscipline modeling in materials and structures, 2020-02, Vol.16 (2), p.340-358</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</citedby><cites>FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</cites><orcidid>0000-0001-5343-8039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/MMMS-01-2019-0006/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,21695,27924,27925,52689,53244</link.rule.ids></links><search><creatorcontrib>Gudekote, Manjunatha</creatorcontrib><creatorcontrib>Choudhari, Rajashekhar</creatorcontrib><creatorcontrib>Vaidya, Hanumesh</creatorcontrib><creatorcontrib>K.V, Prasad</creatorcontrib><creatorcontrib>J.U, Viharika</creatorcontrib><title>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</title><title>Multidiscipline modeling in materials and structures</title><description>Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller. Findings The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter. Originality/value The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.</description><subject>Biot number</subject><subject>Dialysis</subject><subject>Dimensionless analysis</subject><subject>Exact solutions</subject><subject>Flow velocity</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal tract</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Non-Newtonian fluids</subject><subject>Parameter estimation</subject><subject>Powder metallurgy</subject><subject>Power law</subject><subject>Reynolds number</subject><subject>Rheology</subject><subject>Slip</subject><subject>Veins &amp; arteries</subject><subject>Velocity</subject><subject>Waveforms</subject><issn>1573-6105</issn><issn>1573-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU9LxDAQxYsouK5-AG8Bz9VMk3bboyz-WdjFg3oO2XRis7RNTdIt-zX8xLasCIKneTDv9wbeRNE10FsAmt9tNpvXmEKcUChiSml2Es0gXbA4A2Cnv5qm59GF9ztKOfBsMYu-Vq2ue2wVEquJsu0eVTB7nGRpgrGtJ7YloULSoTM-yDoYRRpUlWyNbyaqswO6uJYDGaNMOZqd7T8qIomvTTdiB4K19BPX2XHlSei3SAYTKlIardFhG8gg96ita_xldKZl7fHqZ86j98eHt-VzvH55Wi3v17FiwEOcl7nk24zxvCzKLMlQAy84y_UiS0BrLiXljOtEqrIo2BYKKNKEJnyUoPJFyubRzTG3c_azRx_EzvauHU-KJGXjjRTyyQVHl3LWe4dadM400h0EUDFVL6bqBQUxVS-m6keGHhls0Mm6_Bf58y32DcsliBU</recordid><startdate>20200205</startdate><enddate>20200205</enddate><creator>Gudekote, Manjunatha</creator><creator>Choudhari, Rajashekhar</creator><creator>Vaidya, Hanumesh</creator><creator>K.V, Prasad</creator><creator>J.U, Viharika</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5343-8039</orcidid></search><sort><creationdate>20200205</creationdate><title>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</title><author>Gudekote, Manjunatha ; Choudhari, Rajashekhar ; Vaidya, Hanumesh ; K.V, Prasad ; J.U, Viharika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biot number</topic><topic>Dialysis</topic><topic>Dimensionless analysis</topic><topic>Exact solutions</topic><topic>Flow velocity</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal tract</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Non-Newtonian fluids</topic><topic>Parameter estimation</topic><topic>Powder metallurgy</topic><topic>Power law</topic><topic>Reynolds number</topic><topic>Rheology</topic><topic>Slip</topic><topic>Veins &amp; arteries</topic><topic>Velocity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gudekote, Manjunatha</creatorcontrib><creatorcontrib>Choudhari, Rajashekhar</creatorcontrib><creatorcontrib>Vaidya, Hanumesh</creatorcontrib><creatorcontrib>K.V, Prasad</creatorcontrib><creatorcontrib>J.U, Viharika</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Multidiscipline modeling in materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudekote, Manjunatha</au><au>Choudhari, Rajashekhar</au><au>Vaidya, Hanumesh</au><au>K.V, Prasad</au><au>J.U, Viharika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</atitle><jtitle>Multidiscipline modeling in materials and structures</jtitle><date>2020-02-05</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>340</spage><epage>358</epage><pages>340-358</pages><issn>1573-6105</issn><eissn>1573-6113</eissn><abstract>Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller. Findings The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter. Originality/value The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/MMMS-01-2019-0006</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5343-8039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-6105
ispartof Multidiscipline modeling in materials and structures, 2020-02, Vol.16 (2), p.340-358
issn 1573-6105
1573-6113
language eng
recordid cdi_proquest_journals_2533145185
source Emerald Journals; Standard: Emerald eJournal Premier Collection
subjects Biot number
Dialysis
Dimensionless analysis
Exact solutions
Flow velocity
Gastrointestinal system
Gastrointestinal tract
Heat transfer
Investigations
Non-Newtonian fluids
Parameter estimation
Powder metallurgy
Power law
Reynolds number
Rheology
Slip
Veins & arteries
Velocity
Waveforms
title Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20convective%20conditions%20on%20the%20peristaltic%20mechanism%20of%20power-law%20fluid%20through%20a%20slippery%20elastic%20porous%20tube%20with%20different%20waveforms&rft.jtitle=Multidiscipline%20modeling%20in%20materials%20and%20structures&rft.au=Gudekote,%20Manjunatha&rft.date=2020-02-05&rft.volume=16&rft.issue=2&rft.spage=340&rft.epage=358&rft.pages=340-358&rft.issn=1573-6105&rft.eissn=1573-6113&rft_id=info:doi/10.1108/MMMS-01-2019-0006&rft_dat=%3Cproquest_cross%3E2533145185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533145185&rft_id=info:pmid/&rfr_iscdi=true