Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms
Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The gove...
Gespeichert in:
Veröffentlicht in: | Multidiscipline modeling in materials and structures 2020-02, Vol.16 (2), p.340-358 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 2 |
container_start_page | 340 |
container_title | Multidiscipline modeling in materials and structures |
container_volume | 16 |
creator | Gudekote, Manjunatha Choudhari, Rajashekhar Vaidya, Hanumesh K.V, Prasad J.U, Viharika |
description | Purpose
The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.
Design/methodology/approach
The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.
Findings
The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.
Originality/value
The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels. |
doi_str_mv | 10.1108/MMMS-01-2019-0006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533145185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533145185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</originalsourceid><addsrcrecordid>eNptkU9LxDAQxYsouK5-AG8Bz9VMk3bboyz-WdjFg3oO2XRis7RNTdIt-zX8xLasCIKneTDv9wbeRNE10FsAmt9tNpvXmEKcUChiSml2Es0gXbA4A2Cnv5qm59GF9ztKOfBsMYu-Vq2ue2wVEquJsu0eVTB7nGRpgrGtJ7YloULSoTM-yDoYRRpUlWyNbyaqswO6uJYDGaNMOZqd7T8qIomvTTdiB4K19BPX2XHlSei3SAYTKlIardFhG8gg96ita_xldKZl7fHqZ86j98eHt-VzvH55Wi3v17FiwEOcl7nk24zxvCzKLMlQAy84y_UiS0BrLiXljOtEqrIo2BYKKNKEJnyUoPJFyubRzTG3c_azRx_EzvauHU-KJGXjjRTyyQVHl3LWe4dadM400h0EUDFVL6bqBQUxVS-m6keGHhls0Mm6_Bf58y32DcsliBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533145185</pqid></control><display><type>article</type><title>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Gudekote, Manjunatha ; Choudhari, Rajashekhar ; Vaidya, Hanumesh ; K.V, Prasad ; J.U, Viharika</creator><creatorcontrib>Gudekote, Manjunatha ; Choudhari, Rajashekhar ; Vaidya, Hanumesh ; K.V, Prasad ; J.U, Viharika</creatorcontrib><description>Purpose
The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.
Design/methodology/approach
The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.
Findings
The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.
Originality/value
The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.</description><identifier>ISSN: 1573-6105</identifier><identifier>EISSN: 1573-6113</identifier><identifier>DOI: 10.1108/MMMS-01-2019-0006</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Biot number ; Dialysis ; Dimensionless analysis ; Exact solutions ; Flow velocity ; Gastrointestinal system ; Gastrointestinal tract ; Heat transfer ; Investigations ; Non-Newtonian fluids ; Parameter estimation ; Powder metallurgy ; Power law ; Reynolds number ; Rheology ; Slip ; Veins & arteries ; Velocity ; Waveforms</subject><ispartof>Multidiscipline modeling in materials and structures, 2020-02, Vol.16 (2), p.340-358</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</citedby><cites>FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</cites><orcidid>0000-0001-5343-8039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/MMMS-01-2019-0006/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,21695,27924,27925,52689,53244</link.rule.ids></links><search><creatorcontrib>Gudekote, Manjunatha</creatorcontrib><creatorcontrib>Choudhari, Rajashekhar</creatorcontrib><creatorcontrib>Vaidya, Hanumesh</creatorcontrib><creatorcontrib>K.V, Prasad</creatorcontrib><creatorcontrib>J.U, Viharika</creatorcontrib><title>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</title><title>Multidiscipline modeling in materials and structures</title><description>Purpose
The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.
Design/methodology/approach
The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.
Findings
The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.
Originality/value
The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.</description><subject>Biot number</subject><subject>Dialysis</subject><subject>Dimensionless analysis</subject><subject>Exact solutions</subject><subject>Flow velocity</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal tract</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Non-Newtonian fluids</subject><subject>Parameter estimation</subject><subject>Powder metallurgy</subject><subject>Power law</subject><subject>Reynolds number</subject><subject>Rheology</subject><subject>Slip</subject><subject>Veins & arteries</subject><subject>Velocity</subject><subject>Waveforms</subject><issn>1573-6105</issn><issn>1573-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU9LxDAQxYsouK5-AG8Bz9VMk3bboyz-WdjFg3oO2XRis7RNTdIt-zX8xLasCIKneTDv9wbeRNE10FsAmt9tNpvXmEKcUChiSml2Es0gXbA4A2Cnv5qm59GF9ztKOfBsMYu-Vq2ue2wVEquJsu0eVTB7nGRpgrGtJ7YloULSoTM-yDoYRRpUlWyNbyaqswO6uJYDGaNMOZqd7T8qIomvTTdiB4K19BPX2XHlSei3SAYTKlIardFhG8gg96ita_xldKZl7fHqZ86j98eHt-VzvH55Wi3v17FiwEOcl7nk24zxvCzKLMlQAy84y_UiS0BrLiXljOtEqrIo2BYKKNKEJnyUoPJFyubRzTG3c_azRx_EzvauHU-KJGXjjRTyyQVHl3LWe4dadM400h0EUDFVL6bqBQUxVS-m6keGHhls0Mm6_Bf58y32DcsliBU</recordid><startdate>20200205</startdate><enddate>20200205</enddate><creator>Gudekote, Manjunatha</creator><creator>Choudhari, Rajashekhar</creator><creator>Vaidya, Hanumesh</creator><creator>K.V, Prasad</creator><creator>J.U, Viharika</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5343-8039</orcidid></search><sort><creationdate>20200205</creationdate><title>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</title><author>Gudekote, Manjunatha ; Choudhari, Rajashekhar ; Vaidya, Hanumesh ; K.V, Prasad ; J.U, Viharika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8d8a4b6348d9d626ef149438f7621ff4aa0434f2acd993b1919520243b11c8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biot number</topic><topic>Dialysis</topic><topic>Dimensionless analysis</topic><topic>Exact solutions</topic><topic>Flow velocity</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal tract</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Non-Newtonian fluids</topic><topic>Parameter estimation</topic><topic>Powder metallurgy</topic><topic>Power law</topic><topic>Reynolds number</topic><topic>Rheology</topic><topic>Slip</topic><topic>Veins & arteries</topic><topic>Velocity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gudekote, Manjunatha</creatorcontrib><creatorcontrib>Choudhari, Rajashekhar</creatorcontrib><creatorcontrib>Vaidya, Hanumesh</creatorcontrib><creatorcontrib>K.V, Prasad</creatorcontrib><creatorcontrib>J.U, Viharika</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Multidiscipline modeling in materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudekote, Manjunatha</au><au>Choudhari, Rajashekhar</au><au>Vaidya, Hanumesh</au><au>K.V, Prasad</au><au>J.U, Viharika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms</atitle><jtitle>Multidiscipline modeling in materials and structures</jtitle><date>2020-02-05</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>340</spage><epage>358</epage><pages>340-358</pages><issn>1573-6105</issn><eissn>1573-6113</eissn><abstract>Purpose
The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.
Design/methodology/approach
The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.
Findings
The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.
Originality/value
The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/MMMS-01-2019-0006</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5343-8039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-6105 |
ispartof | Multidiscipline modeling in materials and structures, 2020-02, Vol.16 (2), p.340-358 |
issn | 1573-6105 1573-6113 |
language | eng |
recordid | cdi_proquest_journals_2533145185 |
source | Emerald Journals; Standard: Emerald eJournal Premier Collection |
subjects | Biot number Dialysis Dimensionless analysis Exact solutions Flow velocity Gastrointestinal system Gastrointestinal tract Heat transfer Investigations Non-Newtonian fluids Parameter estimation Powder metallurgy Power law Reynolds number Rheology Slip Veins & arteries Velocity Waveforms |
title | Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20convective%20conditions%20on%20the%20peristaltic%20mechanism%20of%20power-law%20fluid%20through%20a%20slippery%20elastic%20porous%20tube%20with%20different%20waveforms&rft.jtitle=Multidiscipline%20modeling%20in%20materials%20and%20structures&rft.au=Gudekote,%20Manjunatha&rft.date=2020-02-05&rft.volume=16&rft.issue=2&rft.spage=340&rft.epage=358&rft.pages=340-358&rft.issn=1573-6105&rft.eissn=1573-6113&rft_id=info:doi/10.1108/MMMS-01-2019-0006&rft_dat=%3Cproquest_cross%3E2533145185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533145185&rft_id=info:pmid/&rfr_iscdi=true |