Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework
Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pix...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2021-07, Vol.32 (4), Article 86 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Machine vision and applications |
container_volume | 32 |
creator | Dong, Fangfang Li, Nannan |
description | Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and
ℓ
0
norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect. |
doi_str_mv | 10.1007/s00138-021-01214-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533061660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533061660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeB36iOqeElFXOBsObZTuU3tYCet-HtcgsSNy-5qd2a0MwBcY3SLEarvMkKYLipEcIUwwaziJ2CGGSUVroU8BTMky7xAkpyDi5w3CCFW12wGtq9jN_i-80YPfu9giD47mNwu7nUHdbCw6XypPvTah8GHNYwtLJykcxyPh51euwwbnZ2FMUANgzvAvU6-CMZQRNqkd-4Q0_YSnLW6y-7qt8_Bx-PD-_K5Wr09vSzvV5WhWA4VYZpL4bRsuWg0bRthayOQ5da2RnJxdEqls7YhNWa4IRhzIxgzwpR9zegc3Ey6fYqfo8uD2sQxlVeyIpxSJLAQqKDIhDIp5pxcq_pUzKQvhZE6hqqmUFUJVf2Eqngh0YmUCzisXfqT_of1DYo3e0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533061660</pqid></control><display><type>article</type><title>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</title><source>Springer Nature - Complete Springer Journals</source><creator>Dong, Fangfang ; Li, Nannan</creator><creatorcontrib>Dong, Fangfang ; Li, Nannan</creatorcontrib><description>Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and
ℓ
0
norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-021-01214-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Communications Engineering ; Computer Science ; Convexity ; Image Processing and Computer Vision ; Networks ; Noise ; Noise reduction ; Original Paper ; Pattern Recognition ; Pixels ; Regularization ; Ultrasonic imaging ; Ultrasound ; Vision systems</subject><ispartof>Machine vision and applications, 2021-07, Vol.32 (4), Article 86</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</citedby><cites>FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</cites><orcidid>0000-0003-2914-3227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-021-01214-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-021-01214-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dong, Fangfang</creatorcontrib><creatorcontrib>Li, Nannan</creatorcontrib><title>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and
ℓ
0
norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Pixels</subject><subject>Regularization</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeB36iOqeElFXOBsObZTuU3tYCet-HtcgsSNy-5qd2a0MwBcY3SLEarvMkKYLipEcIUwwaziJ2CGGSUVroU8BTMky7xAkpyDi5w3CCFW12wGtq9jN_i-80YPfu9giD47mNwu7nUHdbCw6XypPvTah8GHNYwtLJykcxyPh51euwwbnZ2FMUANgzvAvU6-CMZQRNqkd-4Q0_YSnLW6y-7qt8_Bx-PD-_K5Wr09vSzvV5WhWA4VYZpL4bRsuWg0bRthayOQ5da2RnJxdEqls7YhNWa4IRhzIxgzwpR9zegc3Ey6fYqfo8uD2sQxlVeyIpxSJLAQqKDIhDIp5pxcq_pUzKQvhZE6hqqmUFUJVf2Eqngh0YmUCzisXfqT_of1DYo3e0Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Dong, Fangfang</creator><creator>Li, Nannan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2914-3227</orcidid></search><sort><creationdate>20210701</creationdate><title>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</title><author>Dong, Fangfang ; Li, Nannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Pixels</topic><topic>Regularization</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Fangfang</creatorcontrib><creatorcontrib>Li, Nannan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Fangfang</au><au>Li, Nannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><artnum>86</artnum><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and
ℓ
0
norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-021-01214-5</doi><orcidid>https://orcid.org/0000-0003-2914-3227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2021-07, Vol.32 (4), Article 86 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2533061660 |
source | Springer Nature - Complete Springer Journals |
subjects | Communications Engineering Computer Science Convexity Image Processing and Computer Vision Networks Noise Noise reduction Original Paper Pattern Recognition Pixels Regularization Ultrasonic imaging Ultrasound Vision systems |
title | Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20noise%20removal%20and%20blind%20inpainting%20of%20ultrasound%20images%20based%20on%20a%20new%20variational%20framework&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Dong,%20Fangfang&rft.date=2021-07-01&rft.volume=32&rft.issue=4&rft.artnum=86&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-021-01214-5&rft_dat=%3Cproquest_cross%3E2533061660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533061660&rft_id=info:pmid/&rfr_iscdi=true |