Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework

Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2021-07, Vol.32 (4), Article 86
Hauptverfasser: Dong, Fangfang, Li, Nannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Machine vision and applications
container_volume 32
creator Dong, Fangfang
Li, Nannan
description Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and ℓ 0 norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.
doi_str_mv 10.1007/s00138-021-01214-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533061660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533061660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeB36iOqeElFXOBsObZTuU3tYCet-HtcgsSNy-5qd2a0MwBcY3SLEarvMkKYLipEcIUwwaziJ2CGGSUVroU8BTMky7xAkpyDi5w3CCFW12wGtq9jN_i-80YPfu9giD47mNwu7nUHdbCw6XypPvTah8GHNYwtLJykcxyPh51euwwbnZ2FMUANgzvAvU6-CMZQRNqkd-4Q0_YSnLW6y-7qt8_Bx-PD-_K5Wr09vSzvV5WhWA4VYZpL4bRsuWg0bRthayOQ5da2RnJxdEqls7YhNWa4IRhzIxgzwpR9zegc3Ey6fYqfo8uD2sQxlVeyIpxSJLAQqKDIhDIp5pxcq_pUzKQvhZE6hqqmUFUJVf2Eqngh0YmUCzisXfqT_of1DYo3e0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533061660</pqid></control><display><type>article</type><title>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</title><source>Springer Nature - Complete Springer Journals</source><creator>Dong, Fangfang ; Li, Nannan</creator><creatorcontrib>Dong, Fangfang ; Li, Nannan</creatorcontrib><description>Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and ℓ 0 norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-021-01214-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Communications Engineering ; Computer Science ; Convexity ; Image Processing and Computer Vision ; Networks ; Noise ; Noise reduction ; Original Paper ; Pattern Recognition ; Pixels ; Regularization ; Ultrasonic imaging ; Ultrasound ; Vision systems</subject><ispartof>Machine vision and applications, 2021-07, Vol.32 (4), Article 86</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</citedby><cites>FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</cites><orcidid>0000-0003-2914-3227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-021-01214-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-021-01214-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dong, Fangfang</creatorcontrib><creatorcontrib>Li, Nannan</creatorcontrib><title>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and ℓ 0 norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Pixels</subject><subject>Regularization</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeB36iOqeElFXOBsObZTuU3tYCet-HtcgsSNy-5qd2a0MwBcY3SLEarvMkKYLipEcIUwwaziJ2CGGSUVroU8BTMky7xAkpyDi5w3CCFW12wGtq9jN_i-80YPfu9giD47mNwu7nUHdbCw6XypPvTah8GHNYwtLJykcxyPh51euwwbnZ2FMUANgzvAvU6-CMZQRNqkd-4Q0_YSnLW6y-7qt8_Bx-PD-_K5Wr09vSzvV5WhWA4VYZpL4bRsuWg0bRthayOQ5da2RnJxdEqls7YhNWa4IRhzIxgzwpR9zegc3Ey6fYqfo8uD2sQxlVeyIpxSJLAQqKDIhDIp5pxcq_pUzKQvhZE6hqqmUFUJVf2Eqngh0YmUCzisXfqT_of1DYo3e0Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Dong, Fangfang</creator><creator>Li, Nannan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2914-3227</orcidid></search><sort><creationdate>20210701</creationdate><title>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</title><author>Dong, Fangfang ; Li, Nannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-24a596ea9f56ba3fb6d7c60d5ddfc956013839eddb27141b2115c644c6c839743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Pixels</topic><topic>Regularization</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Fangfang</creatorcontrib><creatorcontrib>Li, Nannan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Fangfang</au><au>Li, Nannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><artnum>86</artnum><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>Image inpainting and denoising are two important preprocessing steps widely used in image and visual analysis. In this paper, by the maximum a posterior estimation, we present a new framework to remove multiplicative noise and artifacts simultaneously, when the locations of the artifacts/damaged pixels are unknown. By taking into account the statistical distribution of multiplicative noise as Gamma or Rayleigh noise, we give the special data fidelity term. To suppress the noise and repair the missing intensities, the proposed method applies spatial regularization to the desirable image, and ℓ 0 norm regularization to the artifacts. We introduce three typical spatial regularization: total variation, second-order total generalized variation (TGV) and fractional-order total variation (FOTV) for smoothing images. Due to the non-convexity and non-differentiability of the proposed minimization problem, we introduce additional auxiliary variables to simplify the original problem, and then use the alternating direction method of multipliers to solve it. A set of experiments on synthetic images and real medical ultrasound images show that the proposed method can efficiently remove the multiplicative noise, and more importantly fill in the missing pixels very well. Compared to other similar method, the TGV and FOTV regularization can not only preserve edges and texture details of the image but also avoid the staircase effect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-021-01214-5</doi><orcidid>https://orcid.org/0000-0003-2914-3227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2021-07, Vol.32 (4), Article 86
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_journals_2533061660
source Springer Nature - Complete Springer Journals
subjects Communications Engineering
Computer Science
Convexity
Image Processing and Computer Vision
Networks
Noise
Noise reduction
Original Paper
Pattern Recognition
Pixels
Regularization
Ultrasonic imaging
Ultrasound
Vision systems
title Multiplicative noise removal and blind inpainting of ultrasound images based on a new variational framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20noise%20removal%20and%20blind%20inpainting%20of%20ultrasound%20images%20based%20on%20a%20new%20variational%20framework&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Dong,%20Fangfang&rft.date=2021-07-01&rft.volume=32&rft.issue=4&rft.artnum=86&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-021-01214-5&rft_dat=%3Cproquest_cross%3E2533061660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533061660&rft_id=info:pmid/&rfr_iscdi=true