The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression

Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-06, Vol.28 (21), p.26732-26746
Hauptverfasser: Yang, Xinya, Geng, Liuna, Zhou, Kexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26746
container_issue 21
container_start_page 26732
container_title Environmental science and pollution research international
container_volume 28
creator Yang, Xinya
Geng, Liuna
Zhou, Kexin
description Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.
doi_str_mv 10.1007/s11356-021-12508-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533057317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533057317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotOBF2CBLLFO8b9jdqgCilQEi7K2HOc64yqJBzsB5pF4SzwzBXasrqx7zneudRB6QckVJUS_LpRyqRrCaEOZJG2jHqENVVQ0WhjzGG2IEaKhXIgLdFnKPSGMGKafogvOhWHSyA36dbcD7NNclrz6JaYZu7nH8NNNcXandwq4JB_diL-v4wzZdXGMy-Gki0vBEAL4Oqv0yyd2JfEwps6N4-FN5U5dnOM84LKvsIqAGpUmWHL0eEo9jMflkTRAGrLb76I_WvEPiMNugR5nGDKUUg95hp4ENxZ4_jC36Ov7d3fXN83t5w8fr9_eNl6wdmlaUT-tNPSs59oFqnnofEe5Z610rfFCGa2YaxVoZ3QIinRAhDStk1x44fgWvTpz9zl9W6Es9j6tea6RlknOidS8QreInVU-p1IyBLvPcXL5YCmxx3bsuR1b27GndqyqppcP6LWboP9r-VNHFfCzoNTVPED-l_0f7G_B254h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533057317</pqid></control><display><type>article</type><title>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Xinya ; Geng, Liuna ; Zhou, Kexin</creator><creatorcontrib>Yang, Xinya ; Geng, Liuna ; Zhou, Kexin</creatorcontrib><description>Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-12508-6</identifier><identifier>PMID: 33492595</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Autocorrelation ; Cause-effect relationships ; Earth and Environmental Science ; Econometrics ; Economic development ; Ecotoxicology ; Empirical analysis ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental management ; Environmental science ; Heterogeneity ; Impact analysis ; Modelling ; Particulate matter ; Regression models ; Research Article ; Social factors ; Socioeconomic data ; Socioeconomic factors ; Socioeconomics ; Spatial analysis ; Spatial heterogeneity ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-06, Vol.28 (21), p.26732-26746</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</citedby><cites>FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</cites><orcidid>0000-0002-2237-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-021-12508-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-021-12508-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33492595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xinya</creatorcontrib><creatorcontrib>Geng, Liuna</creatorcontrib><creatorcontrib>Zhou, Kexin</creatorcontrib><title>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Autocorrelation</subject><subject>Cause-effect relationships</subject><subject>Earth and Environmental Science</subject><subject>Econometrics</subject><subject>Economic development</subject><subject>Ecotoxicology</subject><subject>Empirical analysis</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental management</subject><subject>Environmental science</subject><subject>Heterogeneity</subject><subject>Impact analysis</subject><subject>Modelling</subject><subject>Particulate matter</subject><subject>Regression models</subject><subject>Research Article</subject><subject>Social factors</subject><subject>Socioeconomic data</subject><subject>Socioeconomic factors</subject><subject>Socioeconomics</subject><subject>Spatial analysis</subject><subject>Spatial heterogeneity</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS0EotOBF2CBLLFO8b9jdqgCilQEi7K2HOc64yqJBzsB5pF4SzwzBXasrqx7zneudRB6QckVJUS_LpRyqRrCaEOZJG2jHqENVVQ0WhjzGG2IEaKhXIgLdFnKPSGMGKafogvOhWHSyA36dbcD7NNclrz6JaYZu7nH8NNNcXandwq4JB_diL-v4wzZdXGMy-Gki0vBEAL4Oqv0yyd2JfEwps6N4-FN5U5dnOM84LKvsIqAGpUmWHL0eEo9jMflkTRAGrLb76I_WvEPiMNugR5nGDKUUg95hp4ENxZ4_jC36Ov7d3fXN83t5w8fr9_eNl6wdmlaUT-tNPSs59oFqnnofEe5Z610rfFCGa2YaxVoZ3QIinRAhDStk1x44fgWvTpz9zl9W6Es9j6tea6RlknOidS8QreInVU-p1IyBLvPcXL5YCmxx3bsuR1b27GndqyqppcP6LWboP9r-VNHFfCzoNTVPED-l_0f7G_B254h</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Yang, Xinya</creator><creator>Geng, Liuna</creator><creator>Zhou, Kexin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2237-8851</orcidid></search><sort><creationdate>20210601</creationdate><title>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</title><author>Yang, Xinya ; Geng, Liuna ; Zhou, Kexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Autocorrelation</topic><topic>Cause-effect relationships</topic><topic>Earth and Environmental Science</topic><topic>Econometrics</topic><topic>Economic development</topic><topic>Ecotoxicology</topic><topic>Empirical analysis</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental management</topic><topic>Environmental science</topic><topic>Heterogeneity</topic><topic>Impact analysis</topic><topic>Modelling</topic><topic>Particulate matter</topic><topic>Regression models</topic><topic>Research Article</topic><topic>Social factors</topic><topic>Socioeconomic data</topic><topic>Socioeconomic factors</topic><topic>Socioeconomics</topic><topic>Spatial analysis</topic><topic>Spatial heterogeneity</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xinya</creatorcontrib><creatorcontrib>Geng, Liuna</creatorcontrib><creatorcontrib>Zhou, Kexin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xinya</au><au>Geng, Liuna</au><au>Zhou, Kexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>28</volume><issue>21</issue><spage>26732</spage><epage>26746</epage><pages>26732-26746</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33492595</pmid><doi>10.1007/s11356-021-12508-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2237-8851</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2021-06, Vol.28 (21), p.26732-26746
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_journals_2533057317
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Autocorrelation
Cause-effect relationships
Earth and Environmental Science
Econometrics
Economic development
Ecotoxicology
Empirical analysis
Environment
Environmental Chemistry
Environmental Health
Environmental management
Environmental science
Heterogeneity
Impact analysis
Modelling
Particulate matter
Regression models
Research Article
Social factors
Socioeconomic data
Socioeconomic factors
Socioeconomics
Spatial analysis
Spatial heterogeneity
Waste Water Technology
Water Management
Water Pollution Control
title The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20construction%20and%20examination%20of%20social%20vulnerability%20and%20its%20effects%20on%20PM2.5%20globally:%20combining%20spatial%20econometric%20modeling%20and%20geographically%20weighted%20regression&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Yang,%20Xinya&rft.date=2021-06-01&rft.volume=28&rft.issue=21&rft.spage=26732&rft.epage=26746&rft.pages=26732-26746&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-12508-6&rft_dat=%3Cproquest_cross%3E2533057317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533057317&rft_id=info:pmid/33492595&rfr_iscdi=true