The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression
Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In thi...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-06, Vol.28 (21), p.26732-26746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26746 |
---|---|
container_issue | 21 |
container_start_page | 26732 |
container_title | Environmental science and pollution research international |
container_volume | 28 |
creator | Yang, Xinya Geng, Liuna Zhou, Kexin |
description | Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management. |
doi_str_mv | 10.1007/s11356-021-12508-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533057317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533057317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotOBF2CBLLFO8b9jdqgCilQEi7K2HOc64yqJBzsB5pF4SzwzBXasrqx7zneudRB6QckVJUS_LpRyqRrCaEOZJG2jHqENVVQ0WhjzGG2IEaKhXIgLdFnKPSGMGKafogvOhWHSyA36dbcD7NNclrz6JaYZu7nH8NNNcXandwq4JB_diL-v4wzZdXGMy-Gki0vBEAL4Oqv0yyd2JfEwps6N4-FN5U5dnOM84LKvsIqAGpUmWHL0eEo9jMflkTRAGrLb76I_WvEPiMNugR5nGDKUUg95hp4ENxZ4_jC36Ov7d3fXN83t5w8fr9_eNl6wdmlaUT-tNPSs59oFqnnofEe5Z610rfFCGa2YaxVoZ3QIinRAhDStk1x44fgWvTpz9zl9W6Es9j6tea6RlknOidS8QreInVU-p1IyBLvPcXL5YCmxx3bsuR1b27GndqyqppcP6LWboP9r-VNHFfCzoNTVPED-l_0f7G_B254h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533057317</pqid></control><display><type>article</type><title>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Xinya ; Geng, Liuna ; Zhou, Kexin</creator><creatorcontrib>Yang, Xinya ; Geng, Liuna ; Zhou, Kexin</creatorcontrib><description>Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-12508-6</identifier><identifier>PMID: 33492595</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Autocorrelation ; Cause-effect relationships ; Earth and Environmental Science ; Econometrics ; Economic development ; Ecotoxicology ; Empirical analysis ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental management ; Environmental science ; Heterogeneity ; Impact analysis ; Modelling ; Particulate matter ; Regression models ; Research Article ; Social factors ; Socioeconomic data ; Socioeconomic factors ; Socioeconomics ; Spatial analysis ; Spatial heterogeneity ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-06, Vol.28 (21), p.26732-26746</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</citedby><cites>FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</cites><orcidid>0000-0002-2237-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-021-12508-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-021-12508-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33492595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xinya</creatorcontrib><creatorcontrib>Geng, Liuna</creatorcontrib><creatorcontrib>Zhou, Kexin</creatorcontrib><title>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Autocorrelation</subject><subject>Cause-effect relationships</subject><subject>Earth and Environmental Science</subject><subject>Econometrics</subject><subject>Economic development</subject><subject>Ecotoxicology</subject><subject>Empirical analysis</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental management</subject><subject>Environmental science</subject><subject>Heterogeneity</subject><subject>Impact analysis</subject><subject>Modelling</subject><subject>Particulate matter</subject><subject>Regression models</subject><subject>Research Article</subject><subject>Social factors</subject><subject>Socioeconomic data</subject><subject>Socioeconomic factors</subject><subject>Socioeconomics</subject><subject>Spatial analysis</subject><subject>Spatial heterogeneity</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS0EotOBF2CBLLFO8b9jdqgCilQEi7K2HOc64yqJBzsB5pF4SzwzBXasrqx7zneudRB6QckVJUS_LpRyqRrCaEOZJG2jHqENVVQ0WhjzGG2IEaKhXIgLdFnKPSGMGKafogvOhWHSyA36dbcD7NNclrz6JaYZu7nH8NNNcXandwq4JB_diL-v4wzZdXGMy-Gki0vBEAL4Oqv0yyd2JfEwps6N4-FN5U5dnOM84LKvsIqAGpUmWHL0eEo9jMflkTRAGrLb76I_WvEPiMNugR5nGDKUUg95hp4ENxZ4_jC36Ov7d3fXN83t5w8fr9_eNl6wdmlaUT-tNPSs59oFqnnofEe5Z610rfFCGa2YaxVoZ3QIinRAhDStk1x44fgWvTpz9zl9W6Es9j6tea6RlknOidS8QreInVU-p1IyBLvPcXL5YCmxx3bsuR1b27GndqyqppcP6LWboP9r-VNHFfCzoNTVPED-l_0f7G_B254h</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Yang, Xinya</creator><creator>Geng, Liuna</creator><creator>Zhou, Kexin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2237-8851</orcidid></search><sort><creationdate>20210601</creationdate><title>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</title><author>Yang, Xinya ; Geng, Liuna ; Zhou, Kexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-8494467ed2d37af173fbcb13c285a89c469762a86e7a97ff60be04598a534c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Autocorrelation</topic><topic>Cause-effect relationships</topic><topic>Earth and Environmental Science</topic><topic>Econometrics</topic><topic>Economic development</topic><topic>Ecotoxicology</topic><topic>Empirical analysis</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental management</topic><topic>Environmental science</topic><topic>Heterogeneity</topic><topic>Impact analysis</topic><topic>Modelling</topic><topic>Particulate matter</topic><topic>Regression models</topic><topic>Research Article</topic><topic>Social factors</topic><topic>Socioeconomic data</topic><topic>Socioeconomic factors</topic><topic>Socioeconomics</topic><topic>Spatial analysis</topic><topic>Spatial heterogeneity</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xinya</creatorcontrib><creatorcontrib>Geng, Liuna</creatorcontrib><creatorcontrib>Zhou, Kexin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xinya</au><au>Geng, Liuna</au><au>Zhou, Kexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>28</volume><issue>21</issue><spage>26732</spage><epage>26746</epage><pages>26732-26746</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Fine particulate matter (PM2.5) is of widespread concern, as it poses a serious impact on economic development and human health. Although the influence of socioeconomic factors on PM2.5 has been studied, the constitution and the effect analysis of social vulnerability to PM2.5 remain unclear. In this study, a comprehensive theoretical framework with appropriate indicators for social vulnerability to PM2.5 was constructed. Using spatial autocorrelation analysis, a positive global spatial autocorrelation and notable local spatial cluster relationships were identified. Spatial econometric modeling and geographically weighted regression modeling were performed to explore the cause-effect relationship of social vulnerability to PM2.5. The spatial error model indicated that population and education inequality in the sensitivity dimension caused a significant positive impact on PM2.5, and biocapacity and social governance in the capacity dimension strongly contributed to the decrease of PM2.5 globally. The geographically weighted regression model revealed spatial heterogeneity in the effects of the social vulnerability variables on PM2.5 among countries. These empirical results can provide policymakers with a new perspective on social vulnerability as it relates to PM2.5 governance and targeted environmental pollution management.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33492595</pmid><doi>10.1007/s11356-021-12508-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2237-8851</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2021-06, Vol.28 (21), p.26732-26746 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_journals_2533057317 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Autocorrelation Cause-effect relationships Earth and Environmental Science Econometrics Economic development Ecotoxicology Empirical analysis Environment Environmental Chemistry Environmental Health Environmental management Environmental science Heterogeneity Impact analysis Modelling Particulate matter Regression models Research Article Social factors Socioeconomic data Socioeconomic factors Socioeconomics Spatial analysis Spatial heterogeneity Waste Water Technology Water Management Water Pollution Control |
title | The construction and examination of social vulnerability and its effects on PM2.5 globally: combining spatial econometric modeling and geographically weighted regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20construction%20and%20examination%20of%20social%20vulnerability%20and%20its%20effects%20on%20PM2.5%20globally:%20combining%20spatial%20econometric%20modeling%20and%20geographically%20weighted%20regression&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Yang,%20Xinya&rft.date=2021-06-01&rft.volume=28&rft.issue=21&rft.spage=26732&rft.epage=26746&rft.pages=26732-26746&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-12508-6&rft_dat=%3Cproquest_cross%3E2533057317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533057317&rft_id=info:pmid/33492595&rfr_iscdi=true |