Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning
In elastohydrodynamic lubrication (EHL), the lubricant experiences pressures in excess of 500 MPa and strain rates larger than 10 5 s - 1 . The high pressures lead to a dramatic rise in the Newtonian viscosity and the high rates lead to large shear stresses and pronounced shear thinning. The extra...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2021-09, Vol.69 (3), Article 82 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Tribology letters |
container_volume | 69 |
creator | Kadupitiya, J. C. S. Jadhao, Vikram |
description | In elastohydrodynamic lubrication (EHL), the lubricant experiences pressures in excess of 500 MPa and strain rates larger than
10
5
s
-
1
. The high pressures lead to a dramatic rise in the Newtonian viscosity and the high rates lead to large shear stresses and pronounced shear thinning. The extraction of accurate rheological properties using non-equilibrium molecular dynamics simulations (NEMD) has played a key role in improving our understanding of lubricant flow in EHL conditions. However, the high dimensionality of the output data generated by NEMD simulations often makes a deeper interrogation of the link between molecular-scale features and rheological properties challenging. In this paper, we explore the use of machine learning to analyze and visualize the high-dimensional output data generated in typical NEMD simulations. We show that dimension reduction of NEMD simulation data describing the shear flow of squalane enables a clear visualization of the transition from Newtonian to non-Newtonian shear thinning with increasing shear rate and provides a reliable assessment of the correlation between shear thinning and the evolution in molecular alignment. The end-to-end atom pairs dominate the largest variations in pair orientation tensor components for low-pressure systems (0.1, 100 MPa) and provide the clearest separation of the orientation tensors with rate. On the other hand, the side atom pairs dominate the largest variation in the tensor components for the high-pressure systems (
P
≥
400
MPa) which exhibit an overall limited evolution in orientation tensors as a function of rate. Dimension reduction using all the six components of the orientation tensors of all 435 pairs associated with a squalane molecule shows that the decrease in viscosity with rate for low pressures is strongly correlated with changes in molecular alignment. However, for high pressures, shear thinning occurs at saturated orientational order. |
doi_str_mv | 10.1007/s11249-021-01457-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533050686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533050686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-514ca6a3a92e7955ee43aefa64f8267aca310a65c7fd9f1348aa7585825456ec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ESfOElW8pCAQ0LU1dZzWVWq3drLoF_DbuA0SO1Zjjc-5I12Erim5pYSUd5FSllcZYTQjNBdlxk_QhIqSZ6yk9DS9CeOZlJKfo4sY14QkTYoJ-n4PfmHdEvcrgz9Wxnd-aTV0OO23JvTWROxbXNvdYJuI564xAc-8a2xvvTv-PXQQe7_aN8E3ewcbq3E9LEJKOSB4Hg_xn3YzdDA64Br8CnplncG1geAScInOWuiiufqdUzR_fPiaPWf129PL7L7OdM6qPhM011AAh4qZshLCmJyDaaHIW8mKEjRwSqAQumybqqU8lwClkEIykYvCaD5FN2PuNvjdYGKv1n4ILp1UTHBOBClkkSg2Ujr4GINp1TbYDYS9okQdCldj4SoVro6FK54kPkoxwW5pwl_0P9YP9RiF4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533050686</pqid></control><display><type>article</type><title>Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning</title><source>SpringerLink Journals</source><creator>Kadupitiya, J. C. S. ; Jadhao, Vikram</creator><creatorcontrib>Kadupitiya, J. C. S. ; Jadhao, Vikram</creatorcontrib><description>In elastohydrodynamic lubrication (EHL), the lubricant experiences pressures in excess of 500 MPa and strain rates larger than
10
5
s
-
1
. The high pressures lead to a dramatic rise in the Newtonian viscosity and the high rates lead to large shear stresses and pronounced shear thinning. The extraction of accurate rheological properties using non-equilibrium molecular dynamics simulations (NEMD) has played a key role in improving our understanding of lubricant flow in EHL conditions. However, the high dimensionality of the output data generated by NEMD simulations often makes a deeper interrogation of the link between molecular-scale features and rheological properties challenging. In this paper, we explore the use of machine learning to analyze and visualize the high-dimensional output data generated in typical NEMD simulations. We show that dimension reduction of NEMD simulation data describing the shear flow of squalane enables a clear visualization of the transition from Newtonian to non-Newtonian shear thinning with increasing shear rate and provides a reliable assessment of the correlation between shear thinning and the evolution in molecular alignment. The end-to-end atom pairs dominate the largest variations in pair orientation tensor components for low-pressure systems (0.1, 100 MPa) and provide the clearest separation of the orientation tensors with rate. On the other hand, the side atom pairs dominate the largest variation in the tensor components for the high-pressure systems (
P
≥
400
MPa) which exhibit an overall limited evolution in orientation tensors as a function of rate. Dimension reduction using all the six components of the orientation tensors of all 435 pairs associated with a squalane molecule shows that the decrease in viscosity with rate for low pressures is strongly correlated with changes in molecular alignment. However, for high pressures, shear thinning occurs at saturated orientational order.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-021-01457-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alignment ; Chemistry and Materials Science ; Corrosion and Coatings ; Elastohydrodynamic lubrication ; Evolution ; in memoriam ; Interrogation ; Low pressure ; Lubricants ; Lubricants & lubrication ; Lubrication ; Machine learning ; Mark Robbins ; Materials Science ; Mathematical analysis ; Molecular dynamics ; Nanotechnology ; Orientation ; Original Paper ; Physical Chemistry ; Reduction ; Rheological properties ; Rheology ; Shear flow ; Shear rate ; Shear stress ; Shear thinning (liquids) ; Simulation ; Surfaces and Interfaces ; Tensors ; Theoretical and Applied Mechanics ; Thin Films ; Tribology ; Viscosity</subject><ispartof>Tribology letters, 2021-09, Vol.69 (3), Article 82</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-514ca6a3a92e7955ee43aefa64f8267aca310a65c7fd9f1348aa7585825456ec3</citedby><cites>FETCH-LOGICAL-c429t-514ca6a3a92e7955ee43aefa64f8267aca310a65c7fd9f1348aa7585825456ec3</cites><orcidid>0000-0002-8034-2654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-021-01457-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-021-01457-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kadupitiya, J. C. S.</creatorcontrib><creatorcontrib>Jadhao, Vikram</creatorcontrib><title>Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>In elastohydrodynamic lubrication (EHL), the lubricant experiences pressures in excess of 500 MPa and strain rates larger than
10
5
s
-
1
. The high pressures lead to a dramatic rise in the Newtonian viscosity and the high rates lead to large shear stresses and pronounced shear thinning. The extraction of accurate rheological properties using non-equilibrium molecular dynamics simulations (NEMD) has played a key role in improving our understanding of lubricant flow in EHL conditions. However, the high dimensionality of the output data generated by NEMD simulations often makes a deeper interrogation of the link between molecular-scale features and rheological properties challenging. In this paper, we explore the use of machine learning to analyze and visualize the high-dimensional output data generated in typical NEMD simulations. We show that dimension reduction of NEMD simulation data describing the shear flow of squalane enables a clear visualization of the transition from Newtonian to non-Newtonian shear thinning with increasing shear rate and provides a reliable assessment of the correlation between shear thinning and the evolution in molecular alignment. The end-to-end atom pairs dominate the largest variations in pair orientation tensor components for low-pressure systems (0.1, 100 MPa) and provide the clearest separation of the orientation tensors with rate. On the other hand, the side atom pairs dominate the largest variation in the tensor components for the high-pressure systems (
P
≥
400
MPa) which exhibit an overall limited evolution in orientation tensors as a function of rate. Dimension reduction using all the six components of the orientation tensors of all 435 pairs associated with a squalane molecule shows that the decrease in viscosity with rate for low pressures is strongly correlated with changes in molecular alignment. However, for high pressures, shear thinning occurs at saturated orientational order.</description><subject>Alignment</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Elastohydrodynamic lubrication</subject><subject>Evolution</subject><subject>in memoriam</subject><subject>Interrogation</subject><subject>Low pressure</subject><subject>Lubricants</subject><subject>Lubricants & lubrication</subject><subject>Lubrication</subject><subject>Machine learning</subject><subject>Mark Robbins</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Orientation</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Reduction</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear flow</subject><subject>Shear rate</subject><subject>Shear stress</subject><subject>Shear thinning (liquids)</subject><subject>Simulation</subject><subject>Surfaces and Interfaces</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Viscosity</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ESfOElW8pCAQ0LU1dZzWVWq3drLoF_DbuA0SO1Zjjc-5I12Erim5pYSUd5FSllcZYTQjNBdlxk_QhIqSZ6yk9DS9CeOZlJKfo4sY14QkTYoJ-n4PfmHdEvcrgz9Wxnd-aTV0OO23JvTWROxbXNvdYJuI564xAc-8a2xvvTv-PXQQe7_aN8E3ewcbq3E9LEJKOSB4Hg_xn3YzdDA64Br8CnplncG1geAScInOWuiiufqdUzR_fPiaPWf129PL7L7OdM6qPhM011AAh4qZshLCmJyDaaHIW8mKEjRwSqAQumybqqU8lwClkEIykYvCaD5FN2PuNvjdYGKv1n4ILp1UTHBOBClkkSg2Ujr4GINp1TbYDYS9okQdCldj4SoVro6FK54kPkoxwW5pwl_0P9YP9RiF4w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kadupitiya, J. C. S.</creator><creator>Jadhao, Vikram</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8034-2654</orcidid></search><sort><creationdate>20210901</creationdate><title>Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning</title><author>Kadupitiya, J. C. S. ; Jadhao, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-514ca6a3a92e7955ee43aefa64f8267aca310a65c7fd9f1348aa7585825456ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alignment</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Elastohydrodynamic lubrication</topic><topic>Evolution</topic><topic>in memoriam</topic><topic>Interrogation</topic><topic>Low pressure</topic><topic>Lubricants</topic><topic>Lubricants & lubrication</topic><topic>Lubrication</topic><topic>Machine learning</topic><topic>Mark Robbins</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Orientation</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Reduction</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear flow</topic><topic>Shear rate</topic><topic>Shear stress</topic><topic>Shear thinning (liquids)</topic><topic>Simulation</topic><topic>Surfaces and Interfaces</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadupitiya, J. C. S.</creatorcontrib><creatorcontrib>Jadhao, Vikram</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadupitiya, J. C. S.</au><au>Jadhao, Vikram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>69</volume><issue>3</issue><artnum>82</artnum><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>In elastohydrodynamic lubrication (EHL), the lubricant experiences pressures in excess of 500 MPa and strain rates larger than
10
5
s
-
1
. The high pressures lead to a dramatic rise in the Newtonian viscosity and the high rates lead to large shear stresses and pronounced shear thinning. The extraction of accurate rheological properties using non-equilibrium molecular dynamics simulations (NEMD) has played a key role in improving our understanding of lubricant flow in EHL conditions. However, the high dimensionality of the output data generated by NEMD simulations often makes a deeper interrogation of the link between molecular-scale features and rheological properties challenging. In this paper, we explore the use of machine learning to analyze and visualize the high-dimensional output data generated in typical NEMD simulations. We show that dimension reduction of NEMD simulation data describing the shear flow of squalane enables a clear visualization of the transition from Newtonian to non-Newtonian shear thinning with increasing shear rate and provides a reliable assessment of the correlation between shear thinning and the evolution in molecular alignment. The end-to-end atom pairs dominate the largest variations in pair orientation tensor components for low-pressure systems (0.1, 100 MPa) and provide the clearest separation of the orientation tensors with rate. On the other hand, the side atom pairs dominate the largest variation in the tensor components for the high-pressure systems (
P
≥
400
MPa) which exhibit an overall limited evolution in orientation tensors as a function of rate. Dimension reduction using all the six components of the orientation tensors of all 435 pairs associated with a squalane molecule shows that the decrease in viscosity with rate for low pressures is strongly correlated with changes in molecular alignment. However, for high pressures, shear thinning occurs at saturated orientational order.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11249-021-01457-3</doi><orcidid>https://orcid.org/0000-0002-8034-2654</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8883 |
ispartof | Tribology letters, 2021-09, Vol.69 (3), Article 82 |
issn | 1023-8883 1573-2711 |
language | eng |
recordid | cdi_proquest_journals_2533050686 |
source | SpringerLink Journals |
subjects | Alignment Chemistry and Materials Science Corrosion and Coatings Elastohydrodynamic lubrication Evolution in memoriam Interrogation Low pressure Lubricants Lubricants & lubrication Lubrication Machine learning Mark Robbins Materials Science Mathematical analysis Molecular dynamics Nanotechnology Orientation Original Paper Physical Chemistry Reduction Rheological properties Rheology Shear flow Shear rate Shear stress Shear thinning (liquids) Simulation Surfaces and Interfaces Tensors Theoretical and Applied Mechanics Thin Films Tribology Viscosity |
title | Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Rheological%20Properties%20of%20Liquids%20Under%20Conditions%20of%20Elastohydrodynamic%20Lubrication%20Using%20Simulations%20and%20Machine%20Learning&rft.jtitle=Tribology%20letters&rft.au=Kadupitiya,%20J.%20C.%20S.&rft.date=2021-09-01&rft.volume=69&rft.issue=3&rft.artnum=82&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-021-01457-3&rft_dat=%3Cproquest_cross%3E2533050686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533050686&rft_id=info:pmid/&rfr_iscdi=true |