Refractive index and extinction coefficient of hollow microspheres for solar reflection

While hollow microspheres and various porous structures have received much attention for solar reflection in the recent literature, their fundamental determinants of optical properties and material selection criteria are relatively little known. Here, we study hollow microspheres with varying refrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-05, Vol.118 (21)
Hauptverfasser: Nie, Xiao, Yu, Ziqi, Jackson, Enrique, Lee, Jaeho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 118
creator Nie, Xiao
Yu, Ziqi
Jackson, Enrique
Lee, Jaeho
description While hollow microspheres and various porous structures have received much attention for solar reflection in the recent literature, their fundamental determinants of optical properties and material selection criteria are relatively little known. Here, we study hollow microspheres with varying refractive index and extinction coefficient and identify their role in determining the solar reflectivity. Our simulations based on finite-difference time-domain method show the effects of refractive index between 1.5 and 100 and extinction coefficient between 10−6–100 in the wavelength region of 0.2–2.4 μm and explain how the reflectivity of hollow microspheres is attributed to a combination of strong backscattering and limited absorption. Our analysis indicates that ceramic materials with a high refractive index and a low extinction coefficient such as Y2O3 are promising. When Y2O3 hollow microspheres are randomly distributed with the diameter ranging from 0.5 to 1 μm, our simulation shows the solar reflectivity reaches 0.97 even at 300 μm thickness, and a diffusion theory-based model predicts the solar reflectivity to exceed 0.98 at 500 μm or 0.99 at 1 mm thickness. Our findings can guide optimal designs of hollow microspheres and related porous structures toward complete solar reflection and enable breakthroughs in thermal management and deep-space applications.
doi_str_mv 10.1063/5.0049018
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2533017724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533017724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-50824c55d4e47f50ea948a27cacfb1a0de71ef8f473078c12f5f9a2c20df52c03</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWSbJpdo9SrAoFQRSPIWYnNGW7WZNtrf_erS16EDwNM3zz5s0j5JzBiMFYXMsRQF4CKw7IgIFSmWCsOCQDABDZuJTsmJyktOhbyYUYkNcndNHYzq-R-qbCDTVNRXHT-aYfhobagM5567HpaHB0Huo6fNCltzGkdo4RE3Uh0hRqE2lEV-P33ik5cqZOeLavQ_IyvX2e3Gezx7uHyc0ss2LMu0xCwXMrZZVjrpwENGVeGK6sse6NGahQMXSFy5UAVVjGnXSl4ZZD5SS3IIbkYqfbxvC-wtTpRVjFpj-puRQCmFI876nLHbV1nXqXuo1-aeKnZqC3uWmp97n17NWOTdZ3ZvvLD7wO8RfUbeX-g_8qfwGoQHyW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533017724</pqid></control><display><type>article</type><title>Refractive index and extinction coefficient of hollow microspheres for solar reflection</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nie, Xiao ; Yu, Ziqi ; Jackson, Enrique ; Lee, Jaeho</creator><creatorcontrib>Nie, Xiao ; Yu, Ziqi ; Jackson, Enrique ; Lee, Jaeho</creatorcontrib><description>While hollow microspheres and various porous structures have received much attention for solar reflection in the recent literature, their fundamental determinants of optical properties and material selection criteria are relatively little known. Here, we study hollow microspheres with varying refractive index and extinction coefficient and identify their role in determining the solar reflectivity. Our simulations based on finite-difference time-domain method show the effects of refractive index between 1.5 and 100 and extinction coefficient between 10−6–100 in the wavelength region of 0.2–2.4 μm and explain how the reflectivity of hollow microspheres is attributed to a combination of strong backscattering and limited absorption. Our analysis indicates that ceramic materials with a high refractive index and a low extinction coefficient such as Y2O3 are promising. When Y2O3 hollow microspheres are randomly distributed with the diameter ranging from 0.5 to 1 μm, our simulation shows the solar reflectivity reaches 0.97 even at 300 μm thickness, and a diffusion theory-based model predicts the solar reflectivity to exceed 0.98 at 500 μm or 0.99 at 1 mm thickness. Our findings can guide optimal designs of hollow microspheres and related porous structures toward complete solar reflection and enable breakthroughs in thermal management and deep-space applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0049018</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Backscattering ; Diameters ; Diffusion theory ; Finite difference time domain method ; Materials selection ; Microspheres ; Optical properties ; Reflectance ; Reflection ; Refractivity ; Space applications ; Thermal management ; Thickness ; Time domain analysis ; Yttrium oxide</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (21)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-50824c55d4e47f50ea948a27cacfb1a0de71ef8f473078c12f5f9a2c20df52c03</citedby><cites>FETCH-LOGICAL-c362t-50824c55d4e47f50ea948a27cacfb1a0de71ef8f473078c12f5f9a2c20df52c03</cites><orcidid>0000-0003-0062-4860 ; 0000-0001-6740-6433 ; 0000-0002-2207-4399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0049018$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Yu, Ziqi</creatorcontrib><creatorcontrib>Jackson, Enrique</creatorcontrib><creatorcontrib>Lee, Jaeho</creatorcontrib><title>Refractive index and extinction coefficient of hollow microspheres for solar reflection</title><title>Applied physics letters</title><description>While hollow microspheres and various porous structures have received much attention for solar reflection in the recent literature, their fundamental determinants of optical properties and material selection criteria are relatively little known. Here, we study hollow microspheres with varying refractive index and extinction coefficient and identify their role in determining the solar reflectivity. Our simulations based on finite-difference time-domain method show the effects of refractive index between 1.5 and 100 and extinction coefficient between 10−6–100 in the wavelength region of 0.2–2.4 μm and explain how the reflectivity of hollow microspheres is attributed to a combination of strong backscattering and limited absorption. Our analysis indicates that ceramic materials with a high refractive index and a low extinction coefficient such as Y2O3 are promising. When Y2O3 hollow microspheres are randomly distributed with the diameter ranging from 0.5 to 1 μm, our simulation shows the solar reflectivity reaches 0.97 even at 300 μm thickness, and a diffusion theory-based model predicts the solar reflectivity to exceed 0.98 at 500 μm or 0.99 at 1 mm thickness. Our findings can guide optimal designs of hollow microspheres and related porous structures toward complete solar reflection and enable breakthroughs in thermal management and deep-space applications.</description><subject>Applied physics</subject><subject>Backscattering</subject><subject>Diameters</subject><subject>Diffusion theory</subject><subject>Finite difference time domain method</subject><subject>Materials selection</subject><subject>Microspheres</subject><subject>Optical properties</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Refractivity</subject><subject>Space applications</subject><subject>Thermal management</subject><subject>Thickness</subject><subject>Time domain analysis</subject><subject>Yttrium oxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWSbJpdo9SrAoFQRSPIWYnNGW7WZNtrf_erS16EDwNM3zz5s0j5JzBiMFYXMsRQF4CKw7IgIFSmWCsOCQDABDZuJTsmJyktOhbyYUYkNcndNHYzq-R-qbCDTVNRXHT-aYfhobagM5567HpaHB0Huo6fNCltzGkdo4RE3Uh0hRqE2lEV-P33ik5cqZOeLavQ_IyvX2e3Gezx7uHyc0ss2LMu0xCwXMrZZVjrpwENGVeGK6sse6NGahQMXSFy5UAVVjGnXSl4ZZD5SS3IIbkYqfbxvC-wtTpRVjFpj-puRQCmFI876nLHbV1nXqXuo1-aeKnZqC3uWmp97n17NWOTdZ3ZvvLD7wO8RfUbeX-g_8qfwGoQHyW</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Nie, Xiao</creator><creator>Yu, Ziqi</creator><creator>Jackson, Enrique</creator><creator>Lee, Jaeho</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0062-4860</orcidid><orcidid>https://orcid.org/0000-0001-6740-6433</orcidid><orcidid>https://orcid.org/0000-0002-2207-4399</orcidid></search><sort><creationdate>20210524</creationdate><title>Refractive index and extinction coefficient of hollow microspheres for solar reflection</title><author>Nie, Xiao ; Yu, Ziqi ; Jackson, Enrique ; Lee, Jaeho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-50824c55d4e47f50ea948a27cacfb1a0de71ef8f473078c12f5f9a2c20df52c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Backscattering</topic><topic>Diameters</topic><topic>Diffusion theory</topic><topic>Finite difference time domain method</topic><topic>Materials selection</topic><topic>Microspheres</topic><topic>Optical properties</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Refractivity</topic><topic>Space applications</topic><topic>Thermal management</topic><topic>Thickness</topic><topic>Time domain analysis</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Yu, Ziqi</creatorcontrib><creatorcontrib>Jackson, Enrique</creatorcontrib><creatorcontrib>Lee, Jaeho</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiao</au><au>Yu, Ziqi</au><au>Jackson, Enrique</au><au>Lee, Jaeho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refractive index and extinction coefficient of hollow microspheres for solar reflection</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-24</date><risdate>2021</risdate><volume>118</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>While hollow microspheres and various porous structures have received much attention for solar reflection in the recent literature, their fundamental determinants of optical properties and material selection criteria are relatively little known. Here, we study hollow microspheres with varying refractive index and extinction coefficient and identify their role in determining the solar reflectivity. Our simulations based on finite-difference time-domain method show the effects of refractive index between 1.5 and 100 and extinction coefficient between 10−6–100 in the wavelength region of 0.2–2.4 μm and explain how the reflectivity of hollow microspheres is attributed to a combination of strong backscattering and limited absorption. Our analysis indicates that ceramic materials with a high refractive index and a low extinction coefficient such as Y2O3 are promising. When Y2O3 hollow microspheres are randomly distributed with the diameter ranging from 0.5 to 1 μm, our simulation shows the solar reflectivity reaches 0.97 even at 300 μm thickness, and a diffusion theory-based model predicts the solar reflectivity to exceed 0.98 at 500 μm or 0.99 at 1 mm thickness. Our findings can guide optimal designs of hollow microspheres and related porous structures toward complete solar reflection and enable breakthroughs in thermal management and deep-space applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0049018</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0062-4860</orcidid><orcidid>https://orcid.org/0000-0001-6740-6433</orcidid><orcidid>https://orcid.org/0000-0002-2207-4399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-05, Vol.118 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2533017724
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Backscattering
Diameters
Diffusion theory
Finite difference time domain method
Materials selection
Microspheres
Optical properties
Reflectance
Reflection
Refractivity
Space applications
Thermal management
Thickness
Time domain analysis
Yttrium oxide
title Refractive index and extinction coefficient of hollow microspheres for solar reflection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refractive%20index%20and%20extinction%20coefficient%20of%20hollow%20microspheres%20for%20solar%20reflection&rft.jtitle=Applied%20physics%20letters&rft.au=Nie,%20Xiao&rft.date=2021-05-24&rft.volume=118&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0049018&rft_dat=%3Cproquest_scita%3E2533017724%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533017724&rft_id=info:pmid/&rfr_iscdi=true