Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (21), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 21 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Cheng, Derek K. Oni, Tobiloba E. Thalappillil, Jennifer S. Park, Youngkyu Ting, Hsiu-Chi Alagesan, Brinda Prasad, Nadia V. Addison, Kenneth Rivera, Keith D. Pappin, Darryl J. Van Aelst, Linda Tuveson, David A. |
description | Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC. |
doi_str_mv | 10.1073/pnas.2016904118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_journals_2532784055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040650</jstor_id><sourcerecordid>27040650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-8d220a0478d6af371ccf9468129d9df69521b1c83373ec92872b393b1b55b3903</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVpaTZJzz0VDL304uyMJNvSpRBCk5aEBJL0LGRZ9mrxyq6kbdh_X202pLSneTDfewzzCPmIcIbQsOXsdTyjgLUEjijekAWCxLLmEt6SBQBtSsEpPyLHMa4BQFYC3pMjxoEiCLYg7Z0302C9M8X1_flDYf2gBxsL7Yv7h2tc3l5iMeu0etK7Ik2F8yvXulQ8ubEr0262xd4U3eD16PyQ95n2JlidcqLJ0oZT8q7XY7QfXuYJ-Xn57fHie3lzd_Xj4vymNFzUqRQdpaCBN6Krdc8aNKaXvBZIZSe7vpYVxRaNYKxh1kgqGtoyyVpsqyoLYCfk6yF33rYb2xnrU9CjmoPb6LBTk3bq3413KzVMv5XAuoZK5IAvLwFh-rW1MamNi8aOo_Z22kZFK4aUoxSY0c__oetpG_ITninaCA5VlanlgTJhijHY_vUYBLXvT-37U3_7y45PB8c6pim84rQBDnUF7A-bjZS-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532784055</pqid></control><display><type>article</type><title>Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cheng, Derek K. ; Oni, Tobiloba E. ; Thalappillil, Jennifer S. ; Park, Youngkyu ; Ting, Hsiu-Chi ; Alagesan, Brinda ; Prasad, Nadia V. ; Addison, Kenneth ; Rivera, Keith D. ; Pappin, Darryl J. ; Van Aelst, Linda ; Tuveson, David A.</creator><creatorcontrib>Cheng, Derek K. ; Oni, Tobiloba E. ; Thalappillil, Jennifer S. ; Park, Youngkyu ; Ting, Hsiu-Chi ; Alagesan, Brinda ; Prasad, Nadia V. ; Addison, Kenneth ; Rivera, Keith D. ; Pappin, Darryl J. ; Van Aelst, Linda ; Tuveson, David A.</creatorcontrib><description>Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2016904118</identifier><identifier>PMID: 34021083</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Ablation ; Adenocarcinoma ; Biological Sciences ; Biotin ; Cancer ; Cell proliferation ; Feedback ; K-Ras protein ; Malignancy ; Mass spectrometry ; Mass spectroscopy ; Membranes ; Mutants ; Mutation ; Negative feedback ; Pancreatic cancer ; Ras protein ; Ribosomal protein S6 kinase ; Signal transduction ; Signaling ; Toxicity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (21), p.1-12</ispartof><rights>Copyright National Academy of Sciences May 25, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-8d220a0478d6af371ccf9468129d9df69521b1c83373ec92872b393b1b55b3903</citedby><cites>FETCH-LOGICAL-c486t-8d220a0478d6af371ccf9468129d9df69521b1c83373ec92872b393b1b55b3903</cites><orcidid>0000-0001-6778-0695 ; 0000-0002-0870-012X ; 0000-0003-1169-6739 ; 0000-0002-8964-9628 ; 0000-0002-8981-8401 ; 0000-0002-4860-3033 ; 0000-0001-7085-0260 ; 0000-0002-3584-3038 ; 0000-0003-2979-9576 ; 0000-0001-8395-7374 ; 0000-0002-6916-3380 ; 0000-0002-8017-2712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040650$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040650$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Cheng, Derek K.</creatorcontrib><creatorcontrib>Oni, Tobiloba E.</creatorcontrib><creatorcontrib>Thalappillil, Jennifer S.</creatorcontrib><creatorcontrib>Park, Youngkyu</creatorcontrib><creatorcontrib>Ting, Hsiu-Chi</creatorcontrib><creatorcontrib>Alagesan, Brinda</creatorcontrib><creatorcontrib>Prasad, Nadia V.</creatorcontrib><creatorcontrib>Addison, Kenneth</creatorcontrib><creatorcontrib>Rivera, Keith D.</creatorcontrib><creatorcontrib>Pappin, Darryl J.</creatorcontrib><creatorcontrib>Van Aelst, Linda</creatorcontrib><creatorcontrib>Tuveson, David A.</creatorcontrib><title>Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.</description><subject>Ablation</subject><subject>Adenocarcinoma</subject><subject>Biological Sciences</subject><subject>Biotin</subject><subject>Cancer</subject><subject>Cell proliferation</subject><subject>Feedback</subject><subject>K-Ras protein</subject><subject>Malignancy</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membranes</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Negative feedback</subject><subject>Pancreatic cancer</subject><subject>Ras protein</subject><subject>Ribosomal protein S6 kinase</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Toxicity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUFr3DAQhUVpaTZJzz0VDL304uyMJNvSpRBCk5aEBJL0LGRZ9mrxyq6kbdh_X202pLSneTDfewzzCPmIcIbQsOXsdTyjgLUEjijekAWCxLLmEt6SBQBtSsEpPyLHMa4BQFYC3pMjxoEiCLYg7Z0302C9M8X1_flDYf2gBxsL7Yv7h2tc3l5iMeu0etK7Ik2F8yvXulQ8ubEr0262xd4U3eD16PyQ95n2JlidcqLJ0oZT8q7XY7QfXuYJ-Xn57fHie3lzd_Xj4vymNFzUqRQdpaCBN6Krdc8aNKaXvBZIZSe7vpYVxRaNYKxh1kgqGtoyyVpsqyoLYCfk6yF33rYb2xnrU9CjmoPb6LBTk3bq3413KzVMv5XAuoZK5IAvLwFh-rW1MamNi8aOo_Z22kZFK4aUoxSY0c__oetpG_ITninaCA5VlanlgTJhijHY_vUYBLXvT-37U3_7y45PB8c6pim84rQBDnUF7A-bjZS-</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Cheng, Derek K.</creator><creator>Oni, Tobiloba E.</creator><creator>Thalappillil, Jennifer S.</creator><creator>Park, Youngkyu</creator><creator>Ting, Hsiu-Chi</creator><creator>Alagesan, Brinda</creator><creator>Prasad, Nadia V.</creator><creator>Addison, Kenneth</creator><creator>Rivera, Keith D.</creator><creator>Pappin, Darryl J.</creator><creator>Van Aelst, Linda</creator><creator>Tuveson, David A.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6778-0695</orcidid><orcidid>https://orcid.org/0000-0002-0870-012X</orcidid><orcidid>https://orcid.org/0000-0003-1169-6739</orcidid><orcidid>https://orcid.org/0000-0002-8964-9628</orcidid><orcidid>https://orcid.org/0000-0002-8981-8401</orcidid><orcidid>https://orcid.org/0000-0002-4860-3033</orcidid><orcidid>https://orcid.org/0000-0001-7085-0260</orcidid><orcidid>https://orcid.org/0000-0002-3584-3038</orcidid><orcidid>https://orcid.org/0000-0003-2979-9576</orcidid><orcidid>https://orcid.org/0000-0001-8395-7374</orcidid><orcidid>https://orcid.org/0000-0002-6916-3380</orcidid><orcidid>https://orcid.org/0000-0002-8017-2712</orcidid></search><sort><creationdate>20210525</creationdate><title>Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer</title><author>Cheng, Derek K. ; Oni, Tobiloba E. ; Thalappillil, Jennifer S. ; Park, Youngkyu ; Ting, Hsiu-Chi ; Alagesan, Brinda ; Prasad, Nadia V. ; Addison, Kenneth ; Rivera, Keith D. ; Pappin, Darryl J. ; Van Aelst, Linda ; Tuveson, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-8d220a0478d6af371ccf9468129d9df69521b1c83373ec92872b393b1b55b3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Adenocarcinoma</topic><topic>Biological Sciences</topic><topic>Biotin</topic><topic>Cancer</topic><topic>Cell proliferation</topic><topic>Feedback</topic><topic>K-Ras protein</topic><topic>Malignancy</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membranes</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Negative feedback</topic><topic>Pancreatic cancer</topic><topic>Ras protein</topic><topic>Ribosomal protein S6 kinase</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Derek K.</creatorcontrib><creatorcontrib>Oni, Tobiloba E.</creatorcontrib><creatorcontrib>Thalappillil, Jennifer S.</creatorcontrib><creatorcontrib>Park, Youngkyu</creatorcontrib><creatorcontrib>Ting, Hsiu-Chi</creatorcontrib><creatorcontrib>Alagesan, Brinda</creatorcontrib><creatorcontrib>Prasad, Nadia V.</creatorcontrib><creatorcontrib>Addison, Kenneth</creatorcontrib><creatorcontrib>Rivera, Keith D.</creatorcontrib><creatorcontrib>Pappin, Darryl J.</creatorcontrib><creatorcontrib>Van Aelst, Linda</creatorcontrib><creatorcontrib>Tuveson, David A.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Derek K.</au><au>Oni, Tobiloba E.</au><au>Thalappillil, Jennifer S.</au><au>Park, Youngkyu</au><au>Ting, Hsiu-Chi</au><au>Alagesan, Brinda</au><au>Prasad, Nadia V.</au><au>Addison, Kenneth</au><au>Rivera, Keith D.</au><au>Pappin, Darryl J.</au><au>Van Aelst, Linda</au><au>Tuveson, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>118</volume><issue>21</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34021083</pmid><doi>10.1073/pnas.2016904118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6778-0695</orcidid><orcidid>https://orcid.org/0000-0002-0870-012X</orcidid><orcidid>https://orcid.org/0000-0003-1169-6739</orcidid><orcidid>https://orcid.org/0000-0002-8964-9628</orcidid><orcidid>https://orcid.org/0000-0002-8981-8401</orcidid><orcidid>https://orcid.org/0000-0002-4860-3033</orcidid><orcidid>https://orcid.org/0000-0001-7085-0260</orcidid><orcidid>https://orcid.org/0000-0002-3584-3038</orcidid><orcidid>https://orcid.org/0000-0003-2979-9576</orcidid><orcidid>https://orcid.org/0000-0001-8395-7374</orcidid><orcidid>https://orcid.org/0000-0002-6916-3380</orcidid><orcidid>https://orcid.org/0000-0002-8017-2712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (21), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_2532784055 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ablation Adenocarcinoma Biological Sciences Biotin Cancer Cell proliferation Feedback K-Ras protein Malignancy Mass spectrometry Mass spectroscopy Membranes Mutants Mutation Negative feedback Pancreatic cancer Ras protein Ribosomal protein S6 kinase Signal transduction Signaling Toxicity |
title | Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oncogenic%20KRAS%20engages%20an%20RSK1/NF1%20pathway%20to%20inhibit%20wild-type%20RAS%20signaling%20in%20pancreatic%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cheng,%20Derek%20K.&rft.date=2021-05-25&rft.volume=118&rft.issue=21&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2016904118&rft_dat=%3Cjstor_pubme%3E27040650%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532784055&rft_id=info:pmid/34021083&rft_jstor_id=27040650&rfr_iscdi=true |