Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse
Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are tra...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-05, Vol.22 (10), p.5179, Article 5179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 5179 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Memme, Jonathan M. Slavin, Mikhaela Moradi, Neushaw Hood, David A. |
description | Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically. |
doi_str_mv | 10.3390/ijms22105179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532581761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_88a3a034b03448a9b026632319a96ad6</doaj_id><sourcerecordid>2536498476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-da642da862b03c4896b4b66f8dceb539bf05027ff562b057ebc5a794f3c537c83</originalsourceid><addsrcrecordid>eNqNks9vFSEQgInR2Fq9-Qds4sVEV_k5CxeTuq3apI2XeibAsu_xsg8q7Nb435f1NY31JBfI8PHNZAaEXhP8gTGFP4bdvlBKsCCdeoKOCae0xRi6p_UMQFoQCo7Qi1J2GFNGhXqOjhjHIDkhx-j8KszJbVMccjBT8zkkH33e-Dm40pg4NNdLjunW52ZYcoibpt_mFINrrpbiJt-chbIU_xI9G81U_Kv7_QT9-HJ-3X9rL79_vehPL1vHhZjbwQCng5FALWaOSwWWW4BRDs5bwZQdscC0G0exEqLz1gnTKT4yJ1jnJDtBFwfvkMxO3-SwN_m3TiboP4GUN9rkWvrktZSGGcx4zcS5NMpiCsAoI8ooMANU16eD62axe18riHM20yPp45sYtnqTbrUkggHjVfD2XpDTz8WXWe9DcX6aTPRpKZpWjCvJuzXXm3_QXap9ra1aKSok6YBU6v2BcjmVkv34UAzBep21_nvWFX93wH95m8bigo_OPzzB9Q8AUQrwula5_H-6D7OZQ4p9WuLM7gCce7s2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532581761</pqid></control><display><type>article</type><title>Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Memme, Jonathan M. ; Slavin, Mikhaela ; Moradi, Neushaw ; Hood, David A.</creator><creatorcontrib>Memme, Jonathan M. ; Slavin, Mikhaela ; Moradi, Neushaw ; Hood, David A.</creatorcontrib><description>Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.</description><identifier>ISSN: 1661-6596</identifier><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22105179</identifier><identifier>PMID: 34068411</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adaptation ; Aging ; Animal models ; Apoptosis ; Atrophy ; autophagy ; Bed rest ; Biochemistry & Molecular Biology ; Bioenergetics ; Chemistry ; Chemistry, Multidisciplinary ; COVID-19 ; Disease ; Illnesses ; Immobilization ; Life Sciences & Biomedicine ; Life span ; Metabolism ; Mitochondria ; mitochondrial biogenesis ; mitochondrial quality control ; mitophagy ; Muscle contraction ; Muscles ; Musculoskeletal system ; Organelles ; Physical Sciences ; Physical training ; Protein synthesis ; Proteins ; Quality control ; Respiratory function ; Review ; Science & Technology ; skeletal muscle atrophy ; Ventilators</subject><ispartof>International journal of molecular sciences, 2021-05, Vol.22 (10), p.5179, Article 5179</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000661996000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-da642da862b03c4896b4b66f8dceb539bf05027ff562b057ebc5a794f3c537c83</citedby><cites>FETCH-LOGICAL-c455t-da642da862b03c4896b4b66f8dceb539bf05027ff562b057ebc5a794f3c537c83</cites><orcidid>0000-0002-9553-152X ; 0000-0003-0709-4305 ; 0000-0002-6192-4122 ; 0000-0002-6453-0794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153634/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153634/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Memme, Jonathan M.</creatorcontrib><creatorcontrib>Slavin, Mikhaela</creatorcontrib><creatorcontrib>Moradi, Neushaw</creatorcontrib><creatorcontrib>Hood, David A.</creatorcontrib><title>Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><description>Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.</description><subject>Adaptation</subject><subject>Aging</subject><subject>Animal models</subject><subject>Apoptosis</subject><subject>Atrophy</subject><subject>autophagy</subject><subject>Bed rest</subject><subject>Biochemistry & Molecular Biology</subject><subject>Bioenergetics</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>COVID-19</subject><subject>Disease</subject><subject>Illnesses</subject><subject>Immobilization</subject><subject>Life Sciences & Biomedicine</subject><subject>Life span</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>mitochondrial biogenesis</subject><subject>mitochondrial quality control</subject><subject>mitophagy</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Organelles</subject><subject>Physical Sciences</subject><subject>Physical training</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Respiratory function</subject><subject>Review</subject><subject>Science & Technology</subject><subject>skeletal muscle atrophy</subject><subject>Ventilators</subject><issn>1661-6596</issn><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9vFSEQgInR2Fq9-Qds4sVEV_k5CxeTuq3apI2XeibAsu_xsg8q7Nb435f1NY31JBfI8PHNZAaEXhP8gTGFP4bdvlBKsCCdeoKOCae0xRi6p_UMQFoQCo7Qi1J2GFNGhXqOjhjHIDkhx-j8KszJbVMccjBT8zkkH33e-Dm40pg4NNdLjunW52ZYcoibpt_mFINrrpbiJt-chbIU_xI9G81U_Kv7_QT9-HJ-3X9rL79_vehPL1vHhZjbwQCng5FALWaOSwWWW4BRDs5bwZQdscC0G0exEqLz1gnTKT4yJ1jnJDtBFwfvkMxO3-SwN_m3TiboP4GUN9rkWvrktZSGGcx4zcS5NMpiCsAoI8ooMANU16eD62axe18riHM20yPp45sYtnqTbrUkggHjVfD2XpDTz8WXWe9DcX6aTPRpKZpWjCvJuzXXm3_QXap9ra1aKSok6YBU6v2BcjmVkv34UAzBep21_nvWFX93wH95m8bigo_OPzzB9Q8AUQrwula5_H-6D7OZQ4p9WuLM7gCce7s2</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Memme, Jonathan M.</creator><creator>Slavin, Mikhaela</creator><creator>Moradi, Neushaw</creator><creator>Hood, David A.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9553-152X</orcidid><orcidid>https://orcid.org/0000-0003-0709-4305</orcidid><orcidid>https://orcid.org/0000-0002-6192-4122</orcidid><orcidid>https://orcid.org/0000-0002-6453-0794</orcidid></search><sort><creationdate>20210513</creationdate><title>Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse</title><author>Memme, Jonathan M. ; Slavin, Mikhaela ; Moradi, Neushaw ; Hood, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-da642da862b03c4896b4b66f8dceb539bf05027ff562b057ebc5a794f3c537c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Aging</topic><topic>Animal models</topic><topic>Apoptosis</topic><topic>Atrophy</topic><topic>autophagy</topic><topic>Bed rest</topic><topic>Biochemistry & Molecular Biology</topic><topic>Bioenergetics</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>COVID-19</topic><topic>Disease</topic><topic>Illnesses</topic><topic>Immobilization</topic><topic>Life Sciences & Biomedicine</topic><topic>Life span</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>mitochondrial biogenesis</topic><topic>mitochondrial quality control</topic><topic>mitophagy</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Organelles</topic><topic>Physical Sciences</topic><topic>Physical training</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Respiratory function</topic><topic>Review</topic><topic>Science & Technology</topic><topic>skeletal muscle atrophy</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Memme, Jonathan M.</creatorcontrib><creatorcontrib>Slavin, Mikhaela</creatorcontrib><creatorcontrib>Moradi, Neushaw</creatorcontrib><creatorcontrib>Hood, David A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Memme, Jonathan M.</au><au>Slavin, Mikhaela</au><au>Moradi, Neushaw</au><au>Hood, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><date>2021-05-13</date><risdate>2021</risdate><volume>22</volume><issue>10</issue><spage>5179</spage><pages>5179-</pages><artnum>5179</artnum><issn>1661-6596</issn><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34068411</pmid><doi>10.3390/ijms22105179</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9553-152X</orcidid><orcidid>https://orcid.org/0000-0003-0709-4305</orcidid><orcidid>https://orcid.org/0000-0002-6192-4122</orcidid><orcidid>https://orcid.org/0000-0002-6453-0794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-6596 |
ispartof | International journal of molecular sciences, 2021-05, Vol.22 (10), p.5179, Article 5179 |
issn | 1661-6596 1422-0067 1422-0067 |
language | eng |
recordid | cdi_proquest_journals_2532581761 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Adaptation Aging Animal models Apoptosis Atrophy autophagy Bed rest Biochemistry & Molecular Biology Bioenergetics Chemistry Chemistry, Multidisciplinary COVID-19 Disease Illnesses Immobilization Life Sciences & Biomedicine Life span Metabolism Mitochondria mitochondrial biogenesis mitochondrial quality control mitophagy Muscle contraction Muscles Musculoskeletal system Organelles Physical Sciences Physical training Protein synthesis Proteins Quality control Respiratory function Review Science & Technology skeletal muscle atrophy Ventilators |
title | Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Bioenergetics%20and%20Turnover%20during%20Chronic%20Muscle%20Disuse&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Memme,%20Jonathan%20M.&rft.date=2021-05-13&rft.volume=22&rft.issue=10&rft.spage=5179&rft.pages=5179-&rft.artnum=5179&rft.issn=1661-6596&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22105179&rft_dat=%3Cproquest_cross%3E2536498476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532581761&rft_id=info:pmid/34068411&rft_doaj_id=oai_doaj_org_article_88a3a034b03448a9b026632319a96ad6&rfr_iscdi=true |