Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carriers
Enriched navigational information provided by an automatic identification system (AIS) could improve the estimation accuracy of trade patterns analysis by using different data sources. This paper estimates the global trade flow pattern of dry bulk cargo by commodity, namely iron ore, coal, grains, f...
Gespeichert in:
Veröffentlicht in: | Maritime economics & logistics 2021-06, Vol.23 (2), p.211-236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 211 |
container_title | Maritime economics & logistics |
container_volume | 23 |
creator | Kanamoto, Kei Murong, Liwen Nakashima, Minato Shibasaki, Ryuichi |
description | Enriched navigational information provided by an automatic identification system (AIS) could improve the estimation accuracy of trade patterns analysis by using different data sources. This paper estimates the global trade flow pattern of dry bulk cargo by commodity, namely iron ore, coal, grains, fertilisers, and iron and steel. We use AIS data and the information on commodities handled in ports, estimated by using a two-tiered Geohash geocoding. Estimation results are accurate at country level except for iron and steel. The results are used to quantify the impact of the previously identified variables on vessel size selection by regression analysis and a multinomial logit model. Finally, our model is used to forecast the future shipping demand by vessel type and commodity. |
doi_str_mv | 10.1057/s41278-020-00171-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532426629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532426629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-c511b189ed215fdb065682e5ae6d6a754ff07ebf809012085bc22515663fd75e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoqKtfwFPAczVJm6Q9iSz-A8GLgreQNtM12m1qphXWg5_daEVvnmaYee9N8iPkiLMTzqQ-xYILXWZMsIwxrnmmtsgeL3SViap43P7tc75L9hGfGUtzme-Rj6Xt6dpGP_o10NqvqLOjpTVQOwydB0fHQPHJD4PvV9T3bsIxbqjtbbdBj2f0MjQT4tcy9LQJ63VwKQswSRx9A0ToKPr3NAgtdclaT90LbWyMHiIekJ3WdgiHP3VBHi4v7pfX2e3d1c3y_DZr0ivHrJGc17yswAkuW1czJVUpQFpQTlkti7ZlGuq2ZBXjgpWyboSQXCqVt05LyBfkeM4dYnidAEfzHKaYPoFGyFwUQqkEZ0HErGpiQIzQmiH6BGdjODNfnM3M2STO5puzUclEZxM0off4Z9GKi0rriidJPkswLfsVxL_r_wR_Al-XjCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532426629</pqid></control><display><type>article</type><title>Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carriers</title><source>SpringerNature Complete Journals</source><creator>Kanamoto, Kei ; Murong, Liwen ; Nakashima, Minato ; Shibasaki, Ryuichi</creator><creatorcontrib>Kanamoto, Kei ; Murong, Liwen ; Nakashima, Minato ; Shibasaki, Ryuichi</creatorcontrib><description>Enriched navigational information provided by an automatic identification system (AIS) could improve the estimation accuracy of trade patterns analysis by using different data sources. This paper estimates the global trade flow pattern of dry bulk cargo by commodity, namely iron ore, coal, grains, fertilisers, and iron and steel. We use AIS data and the information on commodities handled in ports, estimated by using a two-tiered Geohash geocoding. Estimation results are accurate at country level except for iron and steel. The results are used to quantify the impact of the previously identified variables on vessel size selection by regression analysis and a multinomial logit model. Finally, our model is used to forecast the future shipping demand by vessel type and commodity.</description><identifier>ISSN: 1479-2931</identifier><identifier>EISSN: 1479-294X</identifier><identifier>DOI: 10.1057/s41278-020-00171-6</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Bulk carriers ; Business and Management ; Commodities ; Economic forecasting ; Fertilizers ; Flow distribution ; Flow pattern ; International trade ; Iron ; Iron ores ; Logistics ; Logit models ; Operations Management ; Original Article ; Regression analysis ; Shipping ; Shipping industry ; Steel</subject><ispartof>Maritime economics & logistics, 2021-06, Vol.23 (2), p.211-236</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-c511b189ed215fdb065682e5ae6d6a754ff07ebf809012085bc22515663fd75e3</citedby><cites>FETCH-LOGICAL-c453t-c511b189ed215fdb065682e5ae6d6a754ff07ebf809012085bc22515663fd75e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1057/s41278-020-00171-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1057/s41278-020-00171-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kanamoto, Kei</creatorcontrib><creatorcontrib>Murong, Liwen</creatorcontrib><creatorcontrib>Nakashima, Minato</creatorcontrib><creatorcontrib>Shibasaki, Ryuichi</creatorcontrib><title>Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carriers</title><title>Maritime economics & logistics</title><addtitle>Marit Econ Logist</addtitle><description>Enriched navigational information provided by an automatic identification system (AIS) could improve the estimation accuracy of trade patterns analysis by using different data sources. This paper estimates the global trade flow pattern of dry bulk cargo by commodity, namely iron ore, coal, grains, fertilisers, and iron and steel. We use AIS data and the information on commodities handled in ports, estimated by using a two-tiered Geohash geocoding. Estimation results are accurate at country level except for iron and steel. The results are used to quantify the impact of the previously identified variables on vessel size selection by regression analysis and a multinomial logit model. Finally, our model is used to forecast the future shipping demand by vessel type and commodity.</description><subject>Bulk carriers</subject><subject>Business and Management</subject><subject>Commodities</subject><subject>Economic forecasting</subject><subject>Fertilizers</subject><subject>Flow distribution</subject><subject>Flow pattern</subject><subject>International trade</subject><subject>Iron</subject><subject>Iron ores</subject><subject>Logistics</subject><subject>Logit models</subject><subject>Operations Management</subject><subject>Original Article</subject><subject>Regression analysis</subject><subject>Shipping</subject><subject>Shipping industry</subject><subject>Steel</subject><issn>1479-2931</issn><issn>1479-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAQxYMoqKtfwFPAczVJm6Q9iSz-A8GLgreQNtM12m1qphXWg5_daEVvnmaYee9N8iPkiLMTzqQ-xYILXWZMsIwxrnmmtsgeL3SViap43P7tc75L9hGfGUtzme-Rj6Xt6dpGP_o10NqvqLOjpTVQOwydB0fHQPHJD4PvV9T3bsIxbqjtbbdBj2f0MjQT4tcy9LQJ63VwKQswSRx9A0ToKPr3NAgtdclaT90LbWyMHiIekJ3WdgiHP3VBHi4v7pfX2e3d1c3y_DZr0ivHrJGc17yswAkuW1czJVUpQFpQTlkti7ZlGuq2ZBXjgpWyboSQXCqVt05LyBfkeM4dYnidAEfzHKaYPoFGyFwUQqkEZ0HErGpiQIzQmiH6BGdjODNfnM3M2STO5puzUclEZxM0off4Z9GKi0rriidJPkswLfsVxL_r_wR_Al-XjCk</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kanamoto, Kei</creator><creator>Murong, Liwen</creator><creator>Nakashima, Minato</creator><creator>Shibasaki, Ryuichi</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210601</creationdate><title>Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carriers</title><author>Kanamoto, Kei ; Murong, Liwen ; Nakashima, Minato ; Shibasaki, Ryuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-c511b189ed215fdb065682e5ae6d6a754ff07ebf809012085bc22515663fd75e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bulk carriers</topic><topic>Business and Management</topic><topic>Commodities</topic><topic>Economic forecasting</topic><topic>Fertilizers</topic><topic>Flow distribution</topic><topic>Flow pattern</topic><topic>International trade</topic><topic>Iron</topic><topic>Iron ores</topic><topic>Logistics</topic><topic>Logit models</topic><topic>Operations Management</topic><topic>Original Article</topic><topic>Regression analysis</topic><topic>Shipping</topic><topic>Shipping industry</topic><topic>Steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanamoto, Kei</creatorcontrib><creatorcontrib>Murong, Liwen</creatorcontrib><creatorcontrib>Nakashima, Minato</creatorcontrib><creatorcontrib>Shibasaki, Ryuichi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Maritime economics & logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanamoto, Kei</au><au>Murong, Liwen</au><au>Nakashima, Minato</au><au>Shibasaki, Ryuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carriers</atitle><jtitle>Maritime economics & logistics</jtitle><stitle>Marit Econ Logist</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>2</issue><spage>211</spage><epage>236</epage><pages>211-236</pages><issn>1479-2931</issn><eissn>1479-294X</eissn><abstract>Enriched navigational information provided by an automatic identification system (AIS) could improve the estimation accuracy of trade patterns analysis by using different data sources. This paper estimates the global trade flow pattern of dry bulk cargo by commodity, namely iron ore, coal, grains, fertilisers, and iron and steel. We use AIS data and the information on commodities handled in ports, estimated by using a two-tiered Geohash geocoding. Estimation results are accurate at country level except for iron and steel. The results are used to quantify the impact of the previously identified variables on vessel size selection by regression analysis and a multinomial logit model. Finally, our model is used to forecast the future shipping demand by vessel type and commodity.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/s41278-020-00171-6</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-2931 |
ispartof | Maritime economics & logistics, 2021-06, Vol.23 (2), p.211-236 |
issn | 1479-2931 1479-294X |
language | eng |
recordid | cdi_proquest_journals_2532426629 |
source | SpringerNature Complete Journals |
subjects | Bulk carriers Business and Management Commodities Economic forecasting Fertilizers Flow distribution Flow pattern International trade Iron Iron ores Logistics Logit models Operations Management Original Article Regression analysis Shipping Shipping industry Steel |
title | Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20maritime%20big%20data%20be%20applied%20to%20shipping%20industry%20analysis?%20Focussing%20on%20commodities%20and%20vessel%20sizes%20of%20dry%20bulk%20carriers&rft.jtitle=Maritime%20economics%20&%20logistics&rft.au=Kanamoto,%20Kei&rft.date=2021-06-01&rft.volume=23&rft.issue=2&rft.spage=211&rft.epage=236&rft.pages=211-236&rft.issn=1479-2931&rft.eissn=1479-294X&rft_id=info:doi/10.1057/s41278-020-00171-6&rft_dat=%3Cproquest_cross%3E2532426629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532426629&rft_id=info:pmid/&rfr_iscdi=true |