MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams

Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Meuren, Sebastian, Reis, David A, Blandford, Roger, Bucksbaum, Phil H, Fisch, Nathaniel J, Fiuza, Frederico, Gerstmayr, Elias, Glenzer, Siegfried, Hogan, Mark J, Pellegrini, Claudio, Peskin, Michael E, Qu, Kenan, White, Glen, Yakimenko, Vitaly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Meuren, Sebastian
Reis, David A
Blandford, Roger
Bucksbaum, Phil H
Fisch, Nathaniel J
Fiuza, Frederico
Gerstmayr, Elias
Glenzer, Siegfried
Hogan, Mark J
Pellegrini, Claudio
Peskin, Michael E
Qu, Kenan
White, Glen
Yakimenko, Vitaly
description Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2532402992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532402992</sourcerecordid><originalsourceid>FETCH-proquest_journals_25324029923</originalsourceid><addsrcrecordid>eNqNysFKAzEQgOEgCBbtOwz0HEgnXW2vrSseLC5F8Vim29FNicmambX4Bj62PfgAPf2H_7swI_R-auczxCszFjk45_D2DqvKj8zvuvHw1gVlaKjnAuhwCtbChoWptB08930uOqSggQXqRLvIe9j9wCrbmFvSkD5gPUQNtmGlI6nCEwkXgWPQDu45CcNr1EJ2w_Hkv4NoaKGO3GrJCZZMn3JjLt8pCo__e20mD_XL6tH2JX8NLLo95KGk09pi5XHmcLFAf576Ax5-UYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532402992</pqid></control><display><type>article</type><title>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</title><source>Free E- Journals</source><creator>Meuren, Sebastian ; Reis, David A ; Blandford, Roger ; Bucksbaum, Phil H ; Fisch, Nathaniel J ; Fiuza, Frederico ; Gerstmayr, Elias ; Glenzer, Siegfried ; Hogan, Mark J ; Pellegrini, Claudio ; Peskin, Michael E ; Qu, Kenan ; White, Glen ; Yakimenko, Vitaly</creator><creatorcontrib>Meuren, Sebastian ; Reis, David A ; Blandford, Roger ; Bucksbaum, Phil H ; Fisch, Nathaniel J ; Fiuza, Frederico ; Gerstmayr, Elias ; Glenzer, Siegfried ; Hogan, Mark J ; Pellegrini, Claudio ; Peskin, Michael E ; Qu, Kenan ; White, Glen ; Yakimenko, Vitaly</creatorcontrib><description>Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astrophysics ; Charge density ; Critical field (superconductivity) ; Electric fields ; Electrons ; Lasers ; Pair production ; Particle accelerators ; Plasma (physics) ; Quantum electrodynamics ; Relativistic electron beams</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Meuren, Sebastian</creatorcontrib><creatorcontrib>Reis, David A</creatorcontrib><creatorcontrib>Blandford, Roger</creatorcontrib><creatorcontrib>Bucksbaum, Phil H</creatorcontrib><creatorcontrib>Fisch, Nathaniel J</creatorcontrib><creatorcontrib>Fiuza, Frederico</creatorcontrib><creatorcontrib>Gerstmayr, Elias</creatorcontrib><creatorcontrib>Glenzer, Siegfried</creatorcontrib><creatorcontrib>Hogan, Mark J</creatorcontrib><creatorcontrib>Pellegrini, Claudio</creatorcontrib><creatorcontrib>Peskin, Michael E</creatorcontrib><creatorcontrib>Qu, Kenan</creatorcontrib><creatorcontrib>White, Glen</creatorcontrib><creatorcontrib>Yakimenko, Vitaly</creatorcontrib><title>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</title><title>arXiv.org</title><description>Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.</description><subject>Astrophysics</subject><subject>Charge density</subject><subject>Critical field (superconductivity)</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Lasers</subject><subject>Pair production</subject><subject>Particle accelerators</subject><subject>Plasma (physics)</subject><subject>Quantum electrodynamics</subject><subject>Relativistic electron beams</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysFKAzEQgOEgCBbtOwz0HEgnXW2vrSseLC5F8Vim29FNicmambX4Bj62PfgAPf2H_7swI_R-auczxCszFjk45_D2DqvKj8zvuvHw1gVlaKjnAuhwCtbChoWptB08930uOqSggQXqRLvIe9j9wCrbmFvSkD5gPUQNtmGlI6nCEwkXgWPQDu45CcNr1EJ2w_Hkv4NoaKGO3GrJCZZMn3JjLt8pCo__e20mD_XL6tH2JX8NLLo95KGk09pi5XHmcLFAf576Ax5-UYw</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Meuren, Sebastian</creator><creator>Reis, David A</creator><creator>Blandford, Roger</creator><creator>Bucksbaum, Phil H</creator><creator>Fisch, Nathaniel J</creator><creator>Fiuza, Frederico</creator><creator>Gerstmayr, Elias</creator><creator>Glenzer, Siegfried</creator><creator>Hogan, Mark J</creator><creator>Pellegrini, Claudio</creator><creator>Peskin, Michael E</creator><creator>Qu, Kenan</creator><creator>White, Glen</creator><creator>Yakimenko, Vitaly</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210525</creationdate><title>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</title><author>Meuren, Sebastian ; Reis, David A ; Blandford, Roger ; Bucksbaum, Phil H ; Fisch, Nathaniel J ; Fiuza, Frederico ; Gerstmayr, Elias ; Glenzer, Siegfried ; Hogan, Mark J ; Pellegrini, Claudio ; Peskin, Michael E ; Qu, Kenan ; White, Glen ; Yakimenko, Vitaly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25324029923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Charge density</topic><topic>Critical field (superconductivity)</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Lasers</topic><topic>Pair production</topic><topic>Particle accelerators</topic><topic>Plasma (physics)</topic><topic>Quantum electrodynamics</topic><topic>Relativistic electron beams</topic><toplevel>online_resources</toplevel><creatorcontrib>Meuren, Sebastian</creatorcontrib><creatorcontrib>Reis, David A</creatorcontrib><creatorcontrib>Blandford, Roger</creatorcontrib><creatorcontrib>Bucksbaum, Phil H</creatorcontrib><creatorcontrib>Fisch, Nathaniel J</creatorcontrib><creatorcontrib>Fiuza, Frederico</creatorcontrib><creatorcontrib>Gerstmayr, Elias</creatorcontrib><creatorcontrib>Glenzer, Siegfried</creatorcontrib><creatorcontrib>Hogan, Mark J</creatorcontrib><creatorcontrib>Pellegrini, Claudio</creatorcontrib><creatorcontrib>Peskin, Michael E</creatorcontrib><creatorcontrib>Qu, Kenan</creatorcontrib><creatorcontrib>White, Glen</creatorcontrib><creatorcontrib>Yakimenko, Vitaly</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meuren, Sebastian</au><au>Reis, David A</au><au>Blandford, Roger</au><au>Bucksbaum, Phil H</au><au>Fisch, Nathaniel J</au><au>Fiuza, Frederico</au><au>Gerstmayr, Elias</au><au>Glenzer, Siegfried</au><au>Hogan, Mark J</au><au>Pellegrini, Claudio</au><au>Peskin, Michael E</au><au>Qu, Kenan</au><au>White, Glen</au><au>Yakimenko, Vitaly</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</atitle><jtitle>arXiv.org</jtitle><date>2021-05-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2532402992
source Free E- Journals
subjects Astrophysics
Charge density
Critical field (superconductivity)
Electric fields
Electrons
Lasers
Pair production
Particle accelerators
Plasma (physics)
Quantum electrodynamics
Relativistic electron beams
title MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MP3%20White%20Paper%202021%20--%20Research%20Opportunities%20Enabled%20by%20Co-locating%20Multi-Petawatt%20Lasers%20with%20Dense%20Ultra-Relativistic%20Electron%20Beams&rft.jtitle=arXiv.org&rft.au=Meuren,%20Sebastian&rft.date=2021-05-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2532402992%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532402992&rft_id=info:pmid/&rfr_iscdi=true