MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams
Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Meuren, Sebastian Reis, David A Blandford, Roger Bucksbaum, Phil H Fisch, Nathaniel J Fiuza, Frederico Gerstmayr, Elias Glenzer, Siegfried Hogan, Mark J Pellegrini, Claudio Peskin, Michael E Qu, Kenan White, Glen Yakimenko, Vitaly |
description | Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2532402992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532402992</sourcerecordid><originalsourceid>FETCH-proquest_journals_25324029923</originalsourceid><addsrcrecordid>eNqNysFKAzEQgOEgCBbtOwz0HEgnXW2vrSseLC5F8Vim29FNicmambX4Bj62PfgAPf2H_7swI_R-auczxCszFjk45_D2DqvKj8zvuvHw1gVlaKjnAuhwCtbChoWptB08930uOqSggQXqRLvIe9j9wCrbmFvSkD5gPUQNtmGlI6nCEwkXgWPQDu45CcNr1EJ2w_Hkv4NoaKGO3GrJCZZMn3JjLt8pCo__e20mD_XL6tH2JX8NLLo95KGk09pi5XHmcLFAf576Ax5-UYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532402992</pqid></control><display><type>article</type><title>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</title><source>Free E- Journals</source><creator>Meuren, Sebastian ; Reis, David A ; Blandford, Roger ; Bucksbaum, Phil H ; Fisch, Nathaniel J ; Fiuza, Frederico ; Gerstmayr, Elias ; Glenzer, Siegfried ; Hogan, Mark J ; Pellegrini, Claudio ; Peskin, Michael E ; Qu, Kenan ; White, Glen ; Yakimenko, Vitaly</creator><creatorcontrib>Meuren, Sebastian ; Reis, David A ; Blandford, Roger ; Bucksbaum, Phil H ; Fisch, Nathaniel J ; Fiuza, Frederico ; Gerstmayr, Elias ; Glenzer, Siegfried ; Hogan, Mark J ; Pellegrini, Claudio ; Peskin, Michael E ; Qu, Kenan ; White, Glen ; Yakimenko, Vitaly</creatorcontrib><description>Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astrophysics ; Charge density ; Critical field (superconductivity) ; Electric fields ; Electrons ; Lasers ; Pair production ; Particle accelerators ; Plasma (physics) ; Quantum electrodynamics ; Relativistic electron beams</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Meuren, Sebastian</creatorcontrib><creatorcontrib>Reis, David A</creatorcontrib><creatorcontrib>Blandford, Roger</creatorcontrib><creatorcontrib>Bucksbaum, Phil H</creatorcontrib><creatorcontrib>Fisch, Nathaniel J</creatorcontrib><creatorcontrib>Fiuza, Frederico</creatorcontrib><creatorcontrib>Gerstmayr, Elias</creatorcontrib><creatorcontrib>Glenzer, Siegfried</creatorcontrib><creatorcontrib>Hogan, Mark J</creatorcontrib><creatorcontrib>Pellegrini, Claudio</creatorcontrib><creatorcontrib>Peskin, Michael E</creatorcontrib><creatorcontrib>Qu, Kenan</creatorcontrib><creatorcontrib>White, Glen</creatorcontrib><creatorcontrib>Yakimenko, Vitaly</creatorcontrib><title>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</title><title>arXiv.org</title><description>Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.</description><subject>Astrophysics</subject><subject>Charge density</subject><subject>Critical field (superconductivity)</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Lasers</subject><subject>Pair production</subject><subject>Particle accelerators</subject><subject>Plasma (physics)</subject><subject>Quantum electrodynamics</subject><subject>Relativistic electron beams</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysFKAzEQgOEgCBbtOwz0HEgnXW2vrSseLC5F8Vim29FNicmambX4Bj62PfgAPf2H_7swI_R-auczxCszFjk45_D2DqvKj8zvuvHw1gVlaKjnAuhwCtbChoWptB08930uOqSggQXqRLvIe9j9wCrbmFvSkD5gPUQNtmGlI6nCEwkXgWPQDu45CcNr1EJ2w_Hkv4NoaKGO3GrJCZZMn3JjLt8pCo__e20mD_XL6tH2JX8NLLo95KGk09pi5XHmcLFAf576Ax5-UYw</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Meuren, Sebastian</creator><creator>Reis, David A</creator><creator>Blandford, Roger</creator><creator>Bucksbaum, Phil H</creator><creator>Fisch, Nathaniel J</creator><creator>Fiuza, Frederico</creator><creator>Gerstmayr, Elias</creator><creator>Glenzer, Siegfried</creator><creator>Hogan, Mark J</creator><creator>Pellegrini, Claudio</creator><creator>Peskin, Michael E</creator><creator>Qu, Kenan</creator><creator>White, Glen</creator><creator>Yakimenko, Vitaly</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210525</creationdate><title>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</title><author>Meuren, Sebastian ; Reis, David A ; Blandford, Roger ; Bucksbaum, Phil H ; Fisch, Nathaniel J ; Fiuza, Frederico ; Gerstmayr, Elias ; Glenzer, Siegfried ; Hogan, Mark J ; Pellegrini, Claudio ; Peskin, Michael E ; Qu, Kenan ; White, Glen ; Yakimenko, Vitaly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25324029923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Charge density</topic><topic>Critical field (superconductivity)</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Lasers</topic><topic>Pair production</topic><topic>Particle accelerators</topic><topic>Plasma (physics)</topic><topic>Quantum electrodynamics</topic><topic>Relativistic electron beams</topic><toplevel>online_resources</toplevel><creatorcontrib>Meuren, Sebastian</creatorcontrib><creatorcontrib>Reis, David A</creatorcontrib><creatorcontrib>Blandford, Roger</creatorcontrib><creatorcontrib>Bucksbaum, Phil H</creatorcontrib><creatorcontrib>Fisch, Nathaniel J</creatorcontrib><creatorcontrib>Fiuza, Frederico</creatorcontrib><creatorcontrib>Gerstmayr, Elias</creatorcontrib><creatorcontrib>Glenzer, Siegfried</creatorcontrib><creatorcontrib>Hogan, Mark J</creatorcontrib><creatorcontrib>Pellegrini, Claudio</creatorcontrib><creatorcontrib>Peskin, Michael E</creatorcontrib><creatorcontrib>Qu, Kenan</creatorcontrib><creatorcontrib>White, Glen</creatorcontrib><creatorcontrib>Yakimenko, Vitaly</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meuren, Sebastian</au><au>Reis, David A</au><au>Blandford, Roger</au><au>Bucksbaum, Phil H</au><au>Fisch, Nathaniel J</au><au>Fiuza, Frederico</au><au>Gerstmayr, Elias</au><au>Glenzer, Siegfried</au><au>Hogan, Mark J</au><au>Pellegrini, Claudio</au><au>Peskin, Michael E</au><au>Qu, Kenan</au><au>White, Glen</au><au>Yakimenko, Vitaly</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams</atitle><jtitle>arXiv.org</jtitle><date>2021-05-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, \(\sim10^{29}\,\mathrm{Wcm^{-2}}\), cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as \(\sim10^{24}\,\mathrm{Wcm^{-2}}\). Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities (\(\sim10^{20}\,\mathrm{Wcm^{-2}}\) at \(\sim10\,\mathrm{GeV}\)). Novel emergent phenomena are predicted to occur in the "QED plasma regime", where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies \(\gtrsim10\,\mathrm{GeV}\). Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2532402992 |
source | Free E- Journals |
subjects | Astrophysics Charge density Critical field (superconductivity) Electric fields Electrons Lasers Pair production Particle accelerators Plasma (physics) Quantum electrodynamics Relativistic electron beams |
title | MP3 White Paper 2021 -- Research Opportunities Enabled by Co-locating Multi-Petawatt Lasers with Dense Ultra-Relativistic Electron Beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MP3%20White%20Paper%202021%20--%20Research%20Opportunities%20Enabled%20by%20Co-locating%20Multi-Petawatt%20Lasers%20with%20Dense%20Ultra-Relativistic%20Electron%20Beams&rft.jtitle=arXiv.org&rft.au=Meuren,%20Sebastian&rft.date=2021-05-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2532402992%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532402992&rft_id=info:pmid/&rfr_iscdi=true |