Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures
The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtai...
Gespeichert in:
Veröffentlicht in: | Processes 2021-05, Vol.9 (5), p.729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 729 |
container_title | Processes |
container_volume | 9 |
creator | Schuldt, Karina Brinkmann, Torsten Georgopanos, Prokopios |
description | The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process. |
doi_str_mv | 10.3390/pr9050729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532352018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532352018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a7863731bfd470a5fcf4fa8c9ce283c7670937bffcde045d7c8219d34b9ef97c3</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNQufIOAKxfR-UkymaXUnwoVRSqCmzC5udOm1Ey8k4DZ-Q6-oU9ipSKezTmLj3PgMHYs-JlShp-3ZHjKtTR7bCSl1LHRQu__y4dsEsKab2WEytNsxGYvSD6-rAOsLC0xeiAPGELkPEWPCANs6mYZeRctsCO7GiryrifbfH18PtsOKbqr37ueMByxA2c3ASe_PmZP11eL6Sye39_cTi_mMUgju9jqPFNaidJVieY2deASZ3MwgDJXoDPNjdKlc1AhT9JKQy6FqVRSGnRGgxqzk11vS_6tx9AVa99Ts50sZKqkSiUX-ZY63VFAPgRCV7RUv1oaCsGLn6-Kv6_UNyyjXSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532352018</pqid></control><display><type>article</type><title>Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek</source><creator>Schuldt, Karina ; Brinkmann, Torsten ; Georgopanos, Prokopios</creator><creatorcontrib>Schuldt, Karina ; Brinkmann, Torsten ; Georgopanos, Prokopios</creatorcontrib><description>The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9050729</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Chemical industry ; Chemical synthesis ; Design ; Distillation ; Distilled water ; Energy consumption ; Evaporation ; Membrane separation ; Optimization ; Polymerization ; Polymers ; Purification ; Purity ; Separation ; Simulation ; Solvents ; Tetrahydrofuran ; Upstream ; Water purification</subject><ispartof>Processes, 2021-05, Vol.9 (5), p.729</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a7863731bfd470a5fcf4fa8c9ce283c7670937bffcde045d7c8219d34b9ef97c3</citedby><cites>FETCH-LOGICAL-c292t-a7863731bfd470a5fcf4fa8c9ce283c7670937bffcde045d7c8219d34b9ef97c3</cites><orcidid>0000-0002-6394-0628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Schuldt, Karina</creatorcontrib><creatorcontrib>Brinkmann, Torsten</creatorcontrib><creatorcontrib>Georgopanos, Prokopios</creatorcontrib><title>Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures</title><title>Processes</title><description>The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process.</description><subject>Adsorption</subject><subject>Chemical industry</subject><subject>Chemical synthesis</subject><subject>Design</subject><subject>Distillation</subject><subject>Distilled water</subject><subject>Energy consumption</subject><subject>Evaporation</subject><subject>Membrane separation</subject><subject>Optimization</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Purification</subject><subject>Purity</subject><subject>Separation</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Tetrahydrofuran</subject><subject>Upstream</subject><subject>Water purification</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM1Kw0AUhQdRsNQufIOAKxfR-UkymaXUnwoVRSqCmzC5udOm1Ey8k4DZ-Q6-oU9ipSKezTmLj3PgMHYs-JlShp-3ZHjKtTR7bCSl1LHRQu__y4dsEsKab2WEytNsxGYvSD6-rAOsLC0xeiAPGELkPEWPCANs6mYZeRctsCO7GiryrifbfH18PtsOKbqr37ueMByxA2c3ASe_PmZP11eL6Sye39_cTi_mMUgju9jqPFNaidJVieY2deASZ3MwgDJXoDPNjdKlc1AhT9JKQy6FqVRSGnRGgxqzk11vS_6tx9AVa99Ts50sZKqkSiUX-ZY63VFAPgRCV7RUv1oaCsGLn6-Kv6_UNyyjXSA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Schuldt, Karina</creator><creator>Brinkmann, Torsten</creator><creator>Georgopanos, Prokopios</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6394-0628</orcidid></search><sort><creationdate>20210501</creationdate><title>Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures</title><author>Schuldt, Karina ; Brinkmann, Torsten ; Georgopanos, Prokopios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a7863731bfd470a5fcf4fa8c9ce283c7670937bffcde045d7c8219d34b9ef97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Chemical industry</topic><topic>Chemical synthesis</topic><topic>Design</topic><topic>Distillation</topic><topic>Distilled water</topic><topic>Energy consumption</topic><topic>Evaporation</topic><topic>Membrane separation</topic><topic>Optimization</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Purification</topic><topic>Purity</topic><topic>Separation</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Tetrahydrofuran</topic><topic>Upstream</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuldt, Karina</creatorcontrib><creatorcontrib>Brinkmann, Torsten</creatorcontrib><creatorcontrib>Georgopanos, Prokopios</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuldt, Karina</au><au>Brinkmann, Torsten</au><au>Georgopanos, Prokopios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures</atitle><jtitle>Processes</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><spage>729</spage><pages>729-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9050729</doi><orcidid>https://orcid.org/0000-0002-6394-0628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2021-05, Vol.9 (5), p.729 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2532352018 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek |
subjects | Adsorption Chemical industry Chemical synthesis Design Distillation Distilled water Energy consumption Evaporation Membrane separation Optimization Polymerization Polymers Purification Purity Separation Simulation Solvents Tetrahydrofuran Upstream Water purification |
title | Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Discharge%20Process%20for%20Recycling%20of%20Tetrahydrofuran%E2%80%93Water%20Mixtures&rft.jtitle=Processes&rft.au=Schuldt,%20Karina&rft.date=2021-05-01&rft.volume=9&rft.issue=5&rft.spage=729&rft.pages=729-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9050729&rft_dat=%3Cproquest_cross%3E2532352018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532352018&rft_id=info:pmid/&rfr_iscdi=true |