Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing
In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2021-11, Vol.32 (11), p.2777-2792 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2792 |
---|---|
container_issue | 11 |
container_start_page | 2777 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 32 |
creator | Zhao, Gongming Xu, Hongli Zhao, Yangming Qiao, Chunming Huang, Liusheng |
description | In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of O(1) O(1) . Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives. |
doi_str_mv | 10.1109/TPDS.2021.3076687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2532302627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419755</ieee_id><sourcerecordid>2532302627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Ls7Nd2j0awI8EggkYj5tlO4UitLVbTPj3bgPxNJOZ552Pl7F7AQMhQD8tP8aLAQKKgYRkOEyTC9YTSqURilRehhxiFWkU-prdeL8FELGCuMdm8zzfVTYryjVfWv_t-VfRbviYaiozKt2R2zLjC2p-C0d8ZN2mI4uSz6pVsSM-ydahXO3rQxsat-wqtztPd-fYZ58vk-XoLZrOX99Hz9PIoZZtpClWOVkN4d5EI6QAcaohTyXGEl0mrZAZKBdeURpdunJIUqHOFSq0AmWfPZ7m1k31cyDfmm11aMqw0qCSKAGHmARKnCjXVN43lJu6Kfa2ORoBpnPNdK6ZzjVzdi1oHk6agoj-eR0LnSgl_wDl0mX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532302627</pqid></control><display><type>article</type><title>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Gongming ; Xu, Hongli ; Zhao, Yangming ; Qiao, Chunming ; Huang, Liusheng</creator><creatorcontrib>Zhao, Gongming ; Xu, Hongli ; Zhao, Yangming ; Qiao, Chunming ; Huang, Liusheng</creatorcontrib><description><![CDATA[In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhao-ieq1-3076687.gif"/> </inline-formula>. Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.]]></description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2021.3076687</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; approximation ; Approximation algorithms ; Caching ; Completion time ; Computation offloading ; Computational geometry ; Convexity ; dependency ; Edge computing ; Face recognition ; Feature extraction ; Mathematical programming ; Mobile computing ; Mobile edge computing ; Mobile handsets ; Nodes ; Optimization ; service caching ; Task analysis ; task offloading</subject><ispartof>IEEE transactions on parallel and distributed systems, 2021-11, Vol.32 (11), p.2777-2792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</citedby><cites>FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</cites><orcidid>0000-0003-4194-3024 ; 0000-0003-1311-8908 ; 0000-0003-3831-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Gongming</creatorcontrib><creatorcontrib>Xu, Hongli</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><title>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description><![CDATA[In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhao-ieq1-3076687.gif"/> </inline-formula>. Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.]]></description><subject>Algorithms</subject><subject>approximation</subject><subject>Approximation algorithms</subject><subject>Caching</subject><subject>Completion time</subject><subject>Computation offloading</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>dependency</subject><subject>Edge computing</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Mathematical programming</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>Mobile handsets</subject><subject>Nodes</subject><subject>Optimization</subject><subject>service caching</subject><subject>Task analysis</subject><subject>task offloading</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Ls7Nd2j0awI8EggkYj5tlO4UitLVbTPj3bgPxNJOZ552Pl7F7AQMhQD8tP8aLAQKKgYRkOEyTC9YTSqURilRehhxiFWkU-prdeL8FELGCuMdm8zzfVTYryjVfWv_t-VfRbviYaiozKt2R2zLjC2p-C0d8ZN2mI4uSz6pVsSM-ydahXO3rQxsat-wqtztPd-fYZ58vk-XoLZrOX99Hz9PIoZZtpClWOVkN4d5EI6QAcaohTyXGEl0mrZAZKBdeURpdunJIUqHOFSq0AmWfPZ7m1k31cyDfmm11aMqw0qCSKAGHmARKnCjXVN43lJu6Kfa2ORoBpnPNdK6ZzjVzdi1oHk6agoj-eR0LnSgl_wDl0mX0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhao, Gongming</creator><creator>Xu, Hongli</creator><creator>Zhao, Yangming</creator><creator>Qiao, Chunming</creator><creator>Huang, Liusheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4194-3024</orcidid><orcidid>https://orcid.org/0000-0003-1311-8908</orcidid><orcidid>https://orcid.org/0000-0003-3831-4577</orcidid></search><sort><creationdate>20211101</creationdate><title>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</title><author>Zhao, Gongming ; Xu, Hongli ; Zhao, Yangming ; Qiao, Chunming ; Huang, Liusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>approximation</topic><topic>Approximation algorithms</topic><topic>Caching</topic><topic>Completion time</topic><topic>Computation offloading</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>dependency</topic><topic>Edge computing</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Mathematical programming</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>Mobile handsets</topic><topic>Nodes</topic><topic>Optimization</topic><topic>service caching</topic><topic>Task analysis</topic><topic>task offloading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Gongming</creatorcontrib><creatorcontrib>Xu, Hongli</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Gongming</au><au>Xu, Hongli</au><au>Zhao, Yangming</au><au>Qiao, Chunming</au><au>Huang, Liusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>32</volume><issue>11</issue><spage>2777</spage><epage>2792</epage><pages>2777-2792</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract><![CDATA[In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhao-ieq1-3076687.gif"/> </inline-formula>. Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2021.3076687</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4194-3024</orcidid><orcidid>https://orcid.org/0000-0003-1311-8908</orcidid><orcidid>https://orcid.org/0000-0003-3831-4577</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2021-11, Vol.32 (11), p.2777-2792 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_proquest_journals_2532302627 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms approximation Approximation algorithms Caching Completion time Computation offloading Computational geometry Convexity dependency Edge computing Face recognition Feature extraction Mathematical programming Mobile computing Mobile edge computing Mobile handsets Nodes Optimization service caching Task analysis task offloading |
title | Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offloading%20Tasks%20With%20Dependency%20and%20Service%20Caching%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Zhao,%20Gongming&rft.date=2021-11-01&rft.volume=32&rft.issue=11&rft.spage=2777&rft.epage=2792&rft.pages=2777-2792&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2021.3076687&rft_dat=%3Cproquest_RIE%3E2532302627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532302627&rft_id=info:pmid/&rft_ieee_id=9419755&rfr_iscdi=true |