Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing

In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2021-11, Vol.32 (11), p.2777-2792
Hauptverfasser: Zhao, Gongming, Xu, Hongli, Zhao, Yangming, Qiao, Chunming, Huang, Liusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2792
container_issue 11
container_start_page 2777
container_title IEEE transactions on parallel and distributed systems
container_volume 32
creator Zhao, Gongming
Xu, Hongli
Zhao, Yangming
Qiao, Chunming
Huang, Liusheng
description In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of O(1) O(1) . Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.
doi_str_mv 10.1109/TPDS.2021.3076687
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2532302627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419755</ieee_id><sourcerecordid>2532302627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Ls7Nd2j0awI8EggkYj5tlO4UitLVbTPj3bgPxNJOZ552Pl7F7AQMhQD8tP8aLAQKKgYRkOEyTC9YTSqURilRehhxiFWkU-prdeL8FELGCuMdm8zzfVTYryjVfWv_t-VfRbviYaiozKt2R2zLjC2p-C0d8ZN2mI4uSz6pVsSM-ydahXO3rQxsat-wqtztPd-fYZ58vk-XoLZrOX99Hz9PIoZZtpClWOVkN4d5EI6QAcaohTyXGEl0mrZAZKBdeURpdunJIUqHOFSq0AmWfPZ7m1k31cyDfmm11aMqw0qCSKAGHmARKnCjXVN43lJu6Kfa2ORoBpnPNdK6ZzjVzdi1oHk6agoj-eR0LnSgl_wDl0mX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532302627</pqid></control><display><type>article</type><title>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Gongming ; Xu, Hongli ; Zhao, Yangming ; Qiao, Chunming ; Huang, Liusheng</creator><creatorcontrib>Zhao, Gongming ; Xu, Hongli ; Zhao, Yangming ; Qiao, Chunming ; Huang, Liusheng</creatorcontrib><description><![CDATA[In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhao-ieq1-3076687.gif"/> </inline-formula>. Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.]]></description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2021.3076687</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; approximation ; Approximation algorithms ; Caching ; Completion time ; Computation offloading ; Computational geometry ; Convexity ; dependency ; Edge computing ; Face recognition ; Feature extraction ; Mathematical programming ; Mobile computing ; Mobile edge computing ; Mobile handsets ; Nodes ; Optimization ; service caching ; Task analysis ; task offloading</subject><ispartof>IEEE transactions on parallel and distributed systems, 2021-11, Vol.32 (11), p.2777-2792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</citedby><cites>FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</cites><orcidid>0000-0003-4194-3024 ; 0000-0003-1311-8908 ; 0000-0003-3831-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Gongming</creatorcontrib><creatorcontrib>Xu, Hongli</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><title>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description><![CDATA[In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhao-ieq1-3076687.gif"/> </inline-formula>. Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.]]></description><subject>Algorithms</subject><subject>approximation</subject><subject>Approximation algorithms</subject><subject>Caching</subject><subject>Completion time</subject><subject>Computation offloading</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>dependency</subject><subject>Edge computing</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Mathematical programming</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>Mobile handsets</subject><subject>Nodes</subject><subject>Optimization</subject><subject>service caching</subject><subject>Task analysis</subject><subject>task offloading</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Ls7Nd2j0awI8EggkYj5tlO4UitLVbTPj3bgPxNJOZ552Pl7F7AQMhQD8tP8aLAQKKgYRkOEyTC9YTSqURilRehhxiFWkU-prdeL8FELGCuMdm8zzfVTYryjVfWv_t-VfRbviYaiozKt2R2zLjC2p-C0d8ZN2mI4uSz6pVsSM-ydahXO3rQxsat-wqtztPd-fYZ58vk-XoLZrOX99Hz9PIoZZtpClWOVkN4d5EI6QAcaohTyXGEl0mrZAZKBdeURpdunJIUqHOFSq0AmWfPZ7m1k31cyDfmm11aMqw0qCSKAGHmARKnCjXVN43lJu6Kfa2ORoBpnPNdK6ZzjVzdi1oHk6agoj-eR0LnSgl_wDl0mX0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhao, Gongming</creator><creator>Xu, Hongli</creator><creator>Zhao, Yangming</creator><creator>Qiao, Chunming</creator><creator>Huang, Liusheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4194-3024</orcidid><orcidid>https://orcid.org/0000-0003-1311-8908</orcidid><orcidid>https://orcid.org/0000-0003-3831-4577</orcidid></search><sort><creationdate>20211101</creationdate><title>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</title><author>Zhao, Gongming ; Xu, Hongli ; Zhao, Yangming ; Qiao, Chunming ; Huang, Liusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9e45fea9002179208004890f832432cd3a13d05c307592c8bc2e3529f5252a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>approximation</topic><topic>Approximation algorithms</topic><topic>Caching</topic><topic>Completion time</topic><topic>Computation offloading</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>dependency</topic><topic>Edge computing</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Mathematical programming</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>Mobile handsets</topic><topic>Nodes</topic><topic>Optimization</topic><topic>service caching</topic><topic>Task analysis</topic><topic>task offloading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Gongming</creatorcontrib><creatorcontrib>Xu, Hongli</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Qiao, Chunming</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Gongming</au><au>Xu, Hongli</au><au>Zhao, Yangming</au><au>Qiao, Chunming</au><au>Huang, Liusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>32</volume><issue>11</issue><spage>2777</spage><epage>2792</epage><pages>2777-2792</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract><![CDATA[In Mobile Edge Computing (MEC), many tasks require specific service support for execution and in addition, have a dependent order of execution among the tasks. However, previous works often ignore the impact of having limited services cached at the edge nodes on (dependent) task offloading, thus may lead to an infeasible offloading decision or a longer completion time. To bridge the gap, this article studies how to efficiently offload dependent tasks to edge nodes with limited (and predetermined) service caching. We formally define the problem of offloading dependent tasks with service caching (ODT-SC), and prove that there exists no algorithm with constant approximation for this hard problem. Then, we design an efficient convex programming based algorithm (CP) to solve this problem. Moreover, we study a special case with a homogeneous MEC and propose a favorite successor based algorithm (FS) to solve this special case with a competitive ratio of <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhao-ieq1-3076687.gif"/> </inline-formula>. Extensive simulation results using Google data traces show that our proposed algorithms can significantly reduce applications' completion time by about 21-47 percent compared with other alternatives.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2021.3076687</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4194-3024</orcidid><orcidid>https://orcid.org/0000-0003-1311-8908</orcidid><orcidid>https://orcid.org/0000-0003-3831-4577</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2021-11, Vol.32 (11), p.2777-2792
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_2532302627
source IEEE Electronic Library (IEL)
subjects Algorithms
approximation
Approximation algorithms
Caching
Completion time
Computation offloading
Computational geometry
Convexity
dependency
Edge computing
Face recognition
Feature extraction
Mathematical programming
Mobile computing
Mobile edge computing
Mobile handsets
Nodes
Optimization
service caching
Task analysis
task offloading
title Offloading Tasks With Dependency and Service Caching in Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offloading%20Tasks%20With%20Dependency%20and%20Service%20Caching%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Zhao,%20Gongming&rft.date=2021-11-01&rft.volume=32&rft.issue=11&rft.spage=2777&rft.epage=2792&rft.pages=2777-2792&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2021.3076687&rft_dat=%3Cproquest_RIE%3E2532302627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532302627&rft_id=info:pmid/&rft_ieee_id=9419755&rfr_iscdi=true