Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed
This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2021-06, Vol.225, p.120254, Article 120254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120254 |
container_title | Energy (Oxford) |
container_volume | 225 |
creator | Wan, Zhanghao Hu, Jianhang Qi, Xianjin |
description | This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation.
•Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency. |
doi_str_mv | 10.1016/j.energy.2021.120254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532197171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054422100503X</els_id><sourcerecordid>2532197171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</originalsourceid><addsrcrecordid>eNp9kD9r5DAQxUVI4DZ7-QZXCFJ7I1mSLTeBY8k_CEmTq4UsjXa12NZGsgNOeZ_8tOfUaWaK994w74fQL0o2lNDq5rCBAeJu3pSkpBuap-BnaEVlzYqqluIcrQirSCE4L3-gy5QOhBAhm2aF_r5MPURvdIf1oLs5-YSDw_vZxmDnQffepKxYPO4h9sHsof9vPsZwhDjOJ3PrQ69TwjudvMvq6MOA_YA1PvoujEXKAcDGRzN1WRx22HWTt_4TLG7B_kQXTncJrr72Gv25v3vbPhbPrw9P29_PhWGMj4UEyYjQ3NGqaVku6UhdiUo2QlvZylqwRpS6brWTVHLOLSe1M0ZLbmhbCcnW6Hq5m39_nyCN6hCmmEsnVQpW0qamNc0uvrhMDClFcOoYfa_jrChRJ9rqoBba6kRbLbRz7HaJQW7w4SGqZDwMBqyPYEZlg__-wD-CdoxL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532197171</pqid></control><display><type>article</type><title>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</title><source>Elsevier ScienceDirect Journals</source><creator>Wan, Zhanghao ; Hu, Jianhang ; Qi, Xianjin</creator><creatorcontrib>Wan, Zhanghao ; Hu, Jianhang ; Qi, Xianjin</creatorcontrib><description>This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation.
•Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120254</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biomass ; Biomass gasification ; Calorific value ; Circulating fluidized bed ; Computational fluid dynamics ; Diameters ; Enlargement ; Equivalence ratio ; Flammability ; Fluid flow ; Fluid mechanics ; Fluidization ; Fluidized beds ; Gasification ; Geographical distribution ; Hydrodynamics ; Multiphase particle-in-cell ; Numerical analysis ; Numerical simulation ; Particle in cell technique ; Particle size ; Renewable energy ; Steam ; Turbulent flow</subject><ispartof>Energy (Oxford), 2021-06, Vol.225, p.120254, Article 120254</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</citedby><cites>FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S036054422100503X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wan, Zhanghao</creatorcontrib><creatorcontrib>Hu, Jianhang</creatorcontrib><creatorcontrib>Qi, Xianjin</creatorcontrib><title>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</title><title>Energy (Oxford)</title><description>This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation.
•Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.</description><subject>Biomass</subject><subject>Biomass gasification</subject><subject>Calorific value</subject><subject>Circulating fluidized bed</subject><subject>Computational fluid dynamics</subject><subject>Diameters</subject><subject>Enlargement</subject><subject>Equivalence ratio</subject><subject>Flammability</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluidization</subject><subject>Fluidized beds</subject><subject>Gasification</subject><subject>Geographical distribution</subject><subject>Hydrodynamics</subject><subject>Multiphase particle-in-cell</subject><subject>Numerical analysis</subject><subject>Numerical simulation</subject><subject>Particle in cell technique</subject><subject>Particle size</subject><subject>Renewable energy</subject><subject>Steam</subject><subject>Turbulent flow</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9r5DAQxUVI4DZ7-QZXCFJ7I1mSLTeBY8k_CEmTq4UsjXa12NZGsgNOeZ_8tOfUaWaK994w74fQL0o2lNDq5rCBAeJu3pSkpBuap-BnaEVlzYqqluIcrQirSCE4L3-gy5QOhBAhm2aF_r5MPURvdIf1oLs5-YSDw_vZxmDnQffepKxYPO4h9sHsof9vPsZwhDjOJ3PrQ69TwjudvMvq6MOA_YA1PvoujEXKAcDGRzN1WRx22HWTt_4TLG7B_kQXTncJrr72Gv25v3vbPhbPrw9P29_PhWGMj4UEyYjQ3NGqaVku6UhdiUo2QlvZylqwRpS6brWTVHLOLSe1M0ZLbmhbCcnW6Hq5m39_nyCN6hCmmEsnVQpW0qamNc0uvrhMDClFcOoYfa_jrChRJ9rqoBba6kRbLbRz7HaJQW7w4SGqZDwMBqyPYEZlg__-wD-CdoxL</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Wan, Zhanghao</creator><creator>Hu, Jianhang</creator><creator>Qi, Xianjin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210615</creationdate><title>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</title><author>Wan, Zhanghao ; Hu, Jianhang ; Qi, Xianjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomass</topic><topic>Biomass gasification</topic><topic>Calorific value</topic><topic>Circulating fluidized bed</topic><topic>Computational fluid dynamics</topic><topic>Diameters</topic><topic>Enlargement</topic><topic>Equivalence ratio</topic><topic>Flammability</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluidization</topic><topic>Fluidized beds</topic><topic>Gasification</topic><topic>Geographical distribution</topic><topic>Hydrodynamics</topic><topic>Multiphase particle-in-cell</topic><topic>Numerical analysis</topic><topic>Numerical simulation</topic><topic>Particle in cell technique</topic><topic>Particle size</topic><topic>Renewable energy</topic><topic>Steam</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Zhanghao</creatorcontrib><creatorcontrib>Hu, Jianhang</creatorcontrib><creatorcontrib>Qi, Xianjin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Zhanghao</au><au>Hu, Jianhang</au><au>Qi, Xianjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>225</volume><spage>120254</spage><pages>120254-</pages><artnum>120254</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation.
•Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120254</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2021-06, Vol.225, p.120254, Article 120254 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2532197171 |
source | Elsevier ScienceDirect Journals |
subjects | Biomass Biomass gasification Calorific value Circulating fluidized bed Computational fluid dynamics Diameters Enlargement Equivalence ratio Flammability Fluid flow Fluid mechanics Fluidization Fluidized beds Gasification Geographical distribution Hydrodynamics Multiphase particle-in-cell Numerical analysis Numerical simulation Particle in cell technique Particle size Renewable energy Steam Turbulent flow |
title | Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20hydrodynamics%20and%20thermochemical%20property%20of%20biomass%20gasification%20in%20a%20pilot-scale%20circulating%20fluidized%20bed&rft.jtitle=Energy%20(Oxford)&rft.au=Wan,%20Zhanghao&rft.date=2021-06-15&rft.volume=225&rft.spage=120254&rft.pages=120254-&rft.artnum=120254&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120254&rft_dat=%3Cproquest_cross%3E2532197171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532197171&rft_id=info:pmid/&rft_els_id=S036054422100503X&rfr_iscdi=true |