Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed

This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2021-06, Vol.225, p.120254, Article 120254
Hauptverfasser: Wan, Zhanghao, Hu, Jianhang, Qi, Xianjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120254
container_title Energy (Oxford)
container_volume 225
creator Wan, Zhanghao
Hu, Jianhang
Qi, Xianjin
description This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation. •Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.
doi_str_mv 10.1016/j.energy.2021.120254
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532197171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054422100503X</els_id><sourcerecordid>2532197171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</originalsourceid><addsrcrecordid>eNp9kD9r5DAQxUVI4DZ7-QZXCFJ7I1mSLTeBY8k_CEmTq4UsjXa12NZGsgNOeZ_8tOfUaWaK994w74fQL0o2lNDq5rCBAeJu3pSkpBuap-BnaEVlzYqqluIcrQirSCE4L3-gy5QOhBAhm2aF_r5MPURvdIf1oLs5-YSDw_vZxmDnQffepKxYPO4h9sHsof9vPsZwhDjOJ3PrQ69TwjudvMvq6MOA_YA1PvoujEXKAcDGRzN1WRx22HWTt_4TLG7B_kQXTncJrr72Gv25v3vbPhbPrw9P29_PhWGMj4UEyYjQ3NGqaVku6UhdiUo2QlvZylqwRpS6brWTVHLOLSe1M0ZLbmhbCcnW6Hq5m39_nyCN6hCmmEsnVQpW0qamNc0uvrhMDClFcOoYfa_jrChRJ9rqoBba6kRbLbRz7HaJQW7w4SGqZDwMBqyPYEZlg__-wD-CdoxL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532197171</pqid></control><display><type>article</type><title>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</title><source>Elsevier ScienceDirect Journals</source><creator>Wan, Zhanghao ; Hu, Jianhang ; Qi, Xianjin</creator><creatorcontrib>Wan, Zhanghao ; Hu, Jianhang ; Qi, Xianjin</creatorcontrib><description>This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation. •Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120254</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biomass ; Biomass gasification ; Calorific value ; Circulating fluidized bed ; Computational fluid dynamics ; Diameters ; Enlargement ; Equivalence ratio ; Flammability ; Fluid flow ; Fluid mechanics ; Fluidization ; Fluidized beds ; Gasification ; Geographical distribution ; Hydrodynamics ; Multiphase particle-in-cell ; Numerical analysis ; Numerical simulation ; Particle in cell technique ; Particle size ; Renewable energy ; Steam ; Turbulent flow</subject><ispartof>Energy (Oxford), 2021-06, Vol.225, p.120254, Article 120254</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</citedby><cites>FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S036054422100503X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wan, Zhanghao</creatorcontrib><creatorcontrib>Hu, Jianhang</creatorcontrib><creatorcontrib>Qi, Xianjin</creatorcontrib><title>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</title><title>Energy (Oxford)</title><description>This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation. •Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.</description><subject>Biomass</subject><subject>Biomass gasification</subject><subject>Calorific value</subject><subject>Circulating fluidized bed</subject><subject>Computational fluid dynamics</subject><subject>Diameters</subject><subject>Enlargement</subject><subject>Equivalence ratio</subject><subject>Flammability</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluidization</subject><subject>Fluidized beds</subject><subject>Gasification</subject><subject>Geographical distribution</subject><subject>Hydrodynamics</subject><subject>Multiphase particle-in-cell</subject><subject>Numerical analysis</subject><subject>Numerical simulation</subject><subject>Particle in cell technique</subject><subject>Particle size</subject><subject>Renewable energy</subject><subject>Steam</subject><subject>Turbulent flow</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9r5DAQxUVI4DZ7-QZXCFJ7I1mSLTeBY8k_CEmTq4UsjXa12NZGsgNOeZ_8tOfUaWaK994w74fQL0o2lNDq5rCBAeJu3pSkpBuap-BnaEVlzYqqluIcrQirSCE4L3-gy5QOhBAhm2aF_r5MPURvdIf1oLs5-YSDw_vZxmDnQffepKxYPO4h9sHsof9vPsZwhDjOJ3PrQ69TwjudvMvq6MOA_YA1PvoujEXKAcDGRzN1WRx22HWTt_4TLG7B_kQXTncJrr72Gv25v3vbPhbPrw9P29_PhWGMj4UEyYjQ3NGqaVku6UhdiUo2QlvZylqwRpS6brWTVHLOLSe1M0ZLbmhbCcnW6Hq5m39_nyCN6hCmmEsnVQpW0qamNc0uvrhMDClFcOoYfa_jrChRJ9rqoBba6kRbLbRz7HaJQW7w4SGqZDwMBqyPYEZlg__-wD-CdoxL</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Wan, Zhanghao</creator><creator>Hu, Jianhang</creator><creator>Qi, Xianjin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210615</creationdate><title>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</title><author>Wan, Zhanghao ; Hu, Jianhang ; Qi, Xianjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8e8305a4f169b3120f07656895ad8b8753952a7baf818444d407fcca84c1b6583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomass</topic><topic>Biomass gasification</topic><topic>Calorific value</topic><topic>Circulating fluidized bed</topic><topic>Computational fluid dynamics</topic><topic>Diameters</topic><topic>Enlargement</topic><topic>Equivalence ratio</topic><topic>Flammability</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluidization</topic><topic>Fluidized beds</topic><topic>Gasification</topic><topic>Geographical distribution</topic><topic>Hydrodynamics</topic><topic>Multiphase particle-in-cell</topic><topic>Numerical analysis</topic><topic>Numerical simulation</topic><topic>Particle in cell technique</topic><topic>Particle size</topic><topic>Renewable energy</topic><topic>Steam</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Zhanghao</creatorcontrib><creatorcontrib>Hu, Jianhang</creatorcontrib><creatorcontrib>Qi, Xianjin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Zhanghao</au><au>Hu, Jianhang</au><au>Qi, Xianjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>225</volume><spage>120254</spage><pages>120254-</pages><artnum>120254</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This study presents a three-dimensional reactive multiphase particle-in-cell (MP-PIC) model to simulate the hydrodynamics and thermochemical property of the biomass gasification process in a pilot-scale circulating fluidized bed gasifier. The bed hydrodynamics and thermochemical characteristics are investigated, together with discussing the effects of operating conditions on the species distribution, lower heating value (LHV), and combustible gas concentration (CGC). The results show that solid particles present oscillation behaviors for the time elapsed at the turbulent fluidization regime. Solid flux and rising velocity have peaks of about 249 kg/(m2·s) and 6.2 m/s in the core region of the bed, respectively. Increasing the gasification temperature reduces the CGC from 15.85% to 15.16%. However, only the concentration of H2 increases with the enlargement of the steam biomass ratio. Comparatively, the equivalence ratio (ER) has the most direct impact on gasification efficiency, and the increase of the ER adversely affects the LHV and CGC. The effect of particle diameter on the LHV, the magnitude of which can cover a range from 3.87% to 3.98%, is negligible compared with the other operational parameters, at least for the specific cases in the present investigation. •Hydrodynamics in a reactive CFB gasifier are explored.•A dense solid region appears near the wall due to the high gas velocity in the center.•The smallest temperature of gas phase appears near the biomass inlet.•Enlarging the equivalence ratio adversely affects the gasification efficiency.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120254</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2021-06, Vol.225, p.120254, Article 120254
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2532197171
source Elsevier ScienceDirect Journals
subjects Biomass
Biomass gasification
Calorific value
Circulating fluidized bed
Computational fluid dynamics
Diameters
Enlargement
Equivalence ratio
Flammability
Fluid flow
Fluid mechanics
Fluidization
Fluidized beds
Gasification
Geographical distribution
Hydrodynamics
Multiphase particle-in-cell
Numerical analysis
Numerical simulation
Particle in cell technique
Particle size
Renewable energy
Steam
Turbulent flow
title Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20hydrodynamics%20and%20thermochemical%20property%20of%20biomass%20gasification%20in%20a%20pilot-scale%20circulating%20fluidized%20bed&rft.jtitle=Energy%20(Oxford)&rft.au=Wan,%20Zhanghao&rft.date=2021-06-15&rft.volume=225&rft.spage=120254&rft.pages=120254-&rft.artnum=120254&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120254&rft_dat=%3Cproquest_cross%3E2532197171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532197171&rft_id=info:pmid/&rft_els_id=S036054422100503X&rfr_iscdi=true