Deep Learned Process Parameterizations Provide Better Representations of Turbulent Heat Fluxes in Hydrologic Models

Deep learning (DL) methods have shown great promise for accurately predicting hydrologic processes but have not yet reached the complexity of traditional process‐based hydrologic models (PBHM) in terms of representing the entire hydrologic cycle. The ability of PBHMs to simulate the hydrologic cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2021-05, Vol.57 (5), p.n/a
Hauptverfasser: Bennett, Andrew, Nijssen, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!