Multipliers on Sω(RN)

The aim of this paper is to introduce and to study the space O M , ω ( R N ) of the multipliers of the space S ω ( R N ) of the ω -ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space O M , ω ( R N ) . Moreover, we define and compare some lc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2021-06, Vol.12 (2)
Hauptverfasser: Albanese, Angela A., Mele, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of pseudo-differential operators and applications
container_volume 12
creator Albanese, Angela A.
Mele, Claudio
description The aim of this paper is to introduce and to study the space O M , ω ( R N ) of the multipliers of the space S ω ( R N ) of the ω -ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space O M , ω ( R N ) . Moreover, we define and compare some lc-topologies of which O M , ω ( R N ) can be naturally endowed.
doi_str_mv 10.1007/s11868-021-00406-x
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2531566883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531566883</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-f61b70b9215b1aaeba90056ae384b13172aa547910ef23c1af83b34f3c6b45693</originalsourceid><addsrcrecordid>eNpFkM1KxDAUhYOM4DDO1oWrATfOInpvbpMmSxn8g1HBH3AXkiGVDqWtSQvzCj6dr2S1ondz7uLjHPgYO0Y4Q4D8PCFqpTkI5AAZKL7bY1NUSnBjzOvk79d4wOYpbWE4MoRIU3Z011dd2VZliGnR1Iunz4_Tx_vlIdsvXJXC_Ddn7OXq8nl1w9cP17erizVvhcg7Xij0OXgjUHp0LnhnAKRygXTmkTAXzsksNwihELRBV2jylBW0UT6TytCMnYy9bWze-5A6u236WA-TVkhCqZTWNFA0UqmNZf0W4j-FYL8d2NGBHRzYHwd2R19VUEym</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531566883</pqid></control><display><type>article</type><title>Multipliers on Sω(RN)</title><source>Springer Nature - Complete Springer Journals</source><creator>Albanese, Angela A. ; Mele, Claudio</creator><creatorcontrib>Albanese, Angela A. ; Mele, Claudio</creatorcontrib><description>The aim of this paper is to introduce and to study the space O M , ω ( R N ) of the multipliers of the space S ω ( R N ) of the ω -ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space O M , ω ( R N ) . Moreover, we define and compare some lc-topologies of which O M , ω ( R N ) can be naturally endowed.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-021-00406-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operator Theory ; Partial Differential Equations ; Topology</subject><ispartof>Journal of pseudo-differential operators and applications, 2021-06, Vol.12 (2)</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6370-2956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-021-00406-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-021-00406-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Albanese, Angela A.</creatorcontrib><creatorcontrib>Mele, Claudio</creatorcontrib><title>Multipliers on Sω(RN)</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>The aim of this paper is to introduce and to study the space O M , ω ( R N ) of the multipliers of the space S ω ( R N ) of the ω -ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space O M , ω ( R N ) . Moreover, we define and compare some lc-topologies of which O M , ω ( R N ) can be naturally endowed.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operator Theory</subject><subject>Partial Differential Equations</subject><subject>Topology</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkM1KxDAUhYOM4DDO1oWrATfOInpvbpMmSxn8g1HBH3AXkiGVDqWtSQvzCj6dr2S1ondz7uLjHPgYO0Y4Q4D8PCFqpTkI5AAZKL7bY1NUSnBjzOvk79d4wOYpbWE4MoRIU3Z011dd2VZliGnR1Iunz4_Tx_vlIdsvXJXC_Ddn7OXq8nl1w9cP17erizVvhcg7Xij0OXgjUHp0LnhnAKRygXTmkTAXzsksNwihELRBV2jylBW0UT6TytCMnYy9bWze-5A6u236WA-TVkhCqZTWNFA0UqmNZf0W4j-FYL8d2NGBHRzYHwd2R19VUEym</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Albanese, Angela A.</creator><creator>Mele, Claudio</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><orcidid>https://orcid.org/0000-0001-6370-2956</orcidid></search><sort><creationdate>20210601</creationdate><title>Multipliers on Sω(RN)</title><author>Albanese, Angela A. ; Mele, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-f61b70b9215b1aaeba90056ae384b13172aa547910ef23c1af83b34f3c6b45693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operator Theory</topic><topic>Partial Differential Equations</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Albanese, Angela A.</creatorcontrib><creatorcontrib>Mele, Claudio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albanese, Angela A.</au><au>Mele, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipliers on Sω(RN)</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>The aim of this paper is to introduce and to study the space O M , ω ( R N ) of the multipliers of the space S ω ( R N ) of the ω -ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space O M , ω ( R N ) . Moreover, we define and compare some lc-topologies of which O M , ω ( R N ) can be naturally endowed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-021-00406-x</doi><orcidid>https://orcid.org/0000-0001-6370-2956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-9981
ispartof Journal of pseudo-differential operators and applications, 2021-06, Vol.12 (2)
issn 1662-9981
1662-999X
language eng
recordid cdi_proquest_journals_2531566883
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Applications of Mathematics
Functional Analysis
Mathematics
Mathematics and Statistics
Multipliers
Operator Theory
Partial Differential Equations
Topology
title Multipliers on Sω(RN)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipliers%20on%20S%CF%89(RN)&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Albanese,%20Angela%20A.&rft.date=2021-06-01&rft.volume=12&rft.issue=2&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-021-00406-x&rft_dat=%3Cproquest_sprin%3E2531566883%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531566883&rft_id=info:pmid/&rfr_iscdi=true