Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem
We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (6), p.690-695 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 695 |
---|---|
container_issue | 6 |
container_start_page | 690 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 255 |
creator | Krasil’nikov, P. S. |
description | We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2. |
doi_str_mv | 10.1007/s10958-021-05405-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2531566551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730558300</galeid><sourcerecordid>A730558300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoqNM_4FXAKy-iaU_TpJcy_GSibPM6nKXpzOwaTTrRf2_mBmMwJBd5Cc8TDudNkrOUXaaMiauQspJLyrKUMp4zTmEvOUq5ACpFyfdjZiKjACI_TI5DmLEoFRKOksexxzY02FnXYkOHrltH8uSWIRBXEyRDVxHbku7NkL71etGgJyPbtfbdfZEX7yaNmZ8kBzU2wZyu717yensz7t_TwfPdQ_96QDUIAAqmnBjJi5JXValB5pjxvC4F6BxLlBWXstKYocwKwwpZa41gBDIsiuXMJfSS89W_H959Lkzo1MwtfBw5qIxDyouC83RDTbExyra16zzquQ1aXQtgnEtgLFJ0BzU1rfHYuNbUNj5v8Zc7-HgqM7d6p3CxJUSmM9_dFBchqIfRcJvNVqz2LgRvavXh7Rz9j0qZWtasVjWrWLP6q1lBlGAlhQi3U-M32_jH-gUwvqar</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531566551</pqid></control><display><type>article</type><title>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</title><source>SpringerLink Journals</source><creator>Krasil’nikov, P. S.</creator><creatorcontrib>Krasil’nikov, P. S.</creatorcontrib><description>We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05405-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Rotating bodies ; Three body problem</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (6), p.690-695</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</citedby><cites>FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05405-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05405-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Krasil’nikov, P. S.</creatorcontrib><title>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rotating bodies</subject><subject>Three body problem</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoqNM_4FXAKy-iaU_TpJcy_GSibPM6nKXpzOwaTTrRf2_mBmMwJBd5Cc8TDudNkrOUXaaMiauQspJLyrKUMp4zTmEvOUq5ACpFyfdjZiKjACI_TI5DmLEoFRKOksexxzY02FnXYkOHrltH8uSWIRBXEyRDVxHbku7NkL71etGgJyPbtfbdfZEX7yaNmZ8kBzU2wZyu717yensz7t_TwfPdQ_96QDUIAAqmnBjJi5JXValB5pjxvC4F6BxLlBWXstKYocwKwwpZa41gBDIsiuXMJfSS89W_H959Lkzo1MwtfBw5qIxDyouC83RDTbExyra16zzquQ1aXQtgnEtgLFJ0BzU1rfHYuNbUNj5v8Zc7-HgqM7d6p3CxJUSmM9_dFBchqIfRcJvNVqz2LgRvavXh7Rz9j0qZWtasVjWrWLP6q1lBlGAlhQi3U-M32_jH-gUwvqar</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Krasil’nikov, P. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210609</creationdate><title>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</title><author>Krasil’nikov, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rotating bodies</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasil’nikov, P. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasil’nikov, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-06-09</date><risdate>2021</risdate><volume>255</volume><issue>6</issue><spage>690</spage><epage>695</epage><pages>690-695</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05405-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (6), p.690-695 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2531566551 |
source | SpringerLink Journals |
subjects | Mathematics Mathematics and Statistics Rotating bodies Three body problem |
title | Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational-Rotational%20Motions%20of%20a%20Rod%20in%20the%20Circular%20Sitnikov%20Problem&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Krasil%E2%80%99nikov,%20P.%20S.&rft.date=2021-06-09&rft.volume=255&rft.issue=6&rft.spage=690&rft.epage=695&rft.pages=690-695&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05405-3&rft_dat=%3Cgale_proqu%3EA730558300%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531566551&rft_id=info:pmid/&rft_galeid=A730558300&rfr_iscdi=true |