Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem

We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (6), p.690-695
1. Verfasser: Krasil’nikov, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 695
container_issue 6
container_start_page 690
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 255
creator Krasil’nikov, P. S.
description We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.
doi_str_mv 10.1007/s10958-021-05405-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2531566551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730558300</galeid><sourcerecordid>A730558300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoqNM_4FXAKy-iaU_TpJcy_GSibPM6nKXpzOwaTTrRf2_mBmMwJBd5Cc8TDudNkrOUXaaMiauQspJLyrKUMp4zTmEvOUq5ACpFyfdjZiKjACI_TI5DmLEoFRKOksexxzY02FnXYkOHrltH8uSWIRBXEyRDVxHbku7NkL71etGgJyPbtfbdfZEX7yaNmZ8kBzU2wZyu717yensz7t_TwfPdQ_96QDUIAAqmnBjJi5JXValB5pjxvC4F6BxLlBWXstKYocwKwwpZa41gBDIsiuXMJfSS89W_H959Lkzo1MwtfBw5qIxDyouC83RDTbExyra16zzquQ1aXQtgnEtgLFJ0BzU1rfHYuNbUNj5v8Zc7-HgqM7d6p3CxJUSmM9_dFBchqIfRcJvNVqz2LgRvavXh7Rz9j0qZWtasVjWrWLP6q1lBlGAlhQi3U-M32_jH-gUwvqar</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531566551</pqid></control><display><type>article</type><title>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</title><source>SpringerLink Journals</source><creator>Krasil’nikov, P. S.</creator><creatorcontrib>Krasil’nikov, P. S.</creatorcontrib><description>We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05405-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Rotating bodies ; Three body problem</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (6), p.690-695</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</citedby><cites>FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05405-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05405-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Krasil’nikov, P. S.</creatorcontrib><title>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rotating bodies</subject><subject>Three body problem</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoqNM_4FXAKy-iaU_TpJcy_GSibPM6nKXpzOwaTTrRf2_mBmMwJBd5Cc8TDudNkrOUXaaMiauQspJLyrKUMp4zTmEvOUq5ACpFyfdjZiKjACI_TI5DmLEoFRKOksexxzY02FnXYkOHrltH8uSWIRBXEyRDVxHbku7NkL71etGgJyPbtfbdfZEX7yaNmZ8kBzU2wZyu717yensz7t_TwfPdQ_96QDUIAAqmnBjJi5JXValB5pjxvC4F6BxLlBWXstKYocwKwwpZa41gBDIsiuXMJfSS89W_H959Lkzo1MwtfBw5qIxDyouC83RDTbExyra16zzquQ1aXQtgnEtgLFJ0BzU1rfHYuNbUNj5v8Zc7-HgqM7d6p3CxJUSmM9_dFBchqIfRcJvNVqz2LgRvavXh7Rz9j0qZWtasVjWrWLP6q1lBlGAlhQi3U-M32_jH-gUwvqar</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Krasil’nikov, P. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210609</creationdate><title>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</title><author>Krasil’nikov, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-3e9be85695dd9c384a254f973c4a9a8d588dca2a826e068fcca3e7a0a66076893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rotating bodies</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasil’nikov, P. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasil’nikov, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-06-09</date><risdate>2021</risdate><volume>255</volume><issue>6</issue><spage>690</spage><epage>695</epage><pages>690-695</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study translational-rotational motions of a homogeneous rod of small mass governed by the circular restricted three-body problem for attracting bodies of equal mass. We show that the equations of spatial motions of the rod admit an integral manifold that corresponds to such motions of the rod at which the center of mass of the rod moves along the normal to the plane of rotation of the main bodies and the rod continuously rotates around the normal at the angle equal to π/2.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05405-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (6), p.690-695
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2531566551
source SpringerLink Journals
subjects Mathematics
Mathematics and Statistics
Rotating bodies
Three body problem
title Translational-Rotational Motions of a Rod in the Circular Sitnikov Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational-Rotational%20Motions%20of%20a%20Rod%20in%20the%20Circular%20Sitnikov%20Problem&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Krasil%E2%80%99nikov,%20P.%20S.&rft.date=2021-06-09&rft.volume=255&rft.issue=6&rft.spage=690&rft.epage=695&rft.pages=690-695&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05405-3&rft_dat=%3Cgale_proqu%3EA730558300%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531566551&rft_id=info:pmid/&rft_galeid=A730558300&rfr_iscdi=true