Successive Refinement of Privacy

This work examines a novel question: how much randomness is needed to achieve local differential privacy (LDP)? A motivating scenario is providing multiple levels of privacy to multiple analysts, either for distribution or for heavy hitter estimation, using the same (randomized) output. We call this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in information theory 2020-11, Vol.1 (3), p.745-759
Hauptverfasser: Girgis, Antonious M., Data, Deepesh, Chaudhuri, Kamalika, Fragouli, Christina, Diggavi, Suhas N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 3
container_start_page 745
container_title IEEE journal on selected areas in information theory
container_volume 1
creator Girgis, Antonious M.
Data, Deepesh
Chaudhuri, Kamalika
Fragouli, Christina
Diggavi, Suhas N.
description This work examines a novel question: how much randomness is needed to achieve local differential privacy (LDP)? A motivating scenario is providing multiple levels of privacy to multiple analysts, either for distribution or for heavy hitter estimation, using the same (randomized) output. We call this setting successive refinement of privacy , as it provides hierarchical access to the raw data with different privacy levels. For example, the same randomized output could enable one analyst to reconstruct the input, while another can only estimate the distribution subject to LDP requirements. This extends the classical Shannon (wiretap) security setting to local differential privacy. We provide (order-wise) tight characterizations of privacy-utility-randomness trade-offs in several cases for distribution estimation, including the standard LDP setting under a randomness constraint. We also provide a non-trivial privacy mechanism for multi-level privacy. Furthermore, we show that we cannot reuse random keys over time while preserving privacy of each user.
doi_str_mv 10.1109/JSAIT.2020.3040403
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2531561148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9270285</ieee_id><sourcerecordid>2531561148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2543-ffd1b542afd55590a0a44880adb70e2f3984f395cd3bac47cf656244a95ced5c3</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWGpfQG8WvN46mSSb7GUp_lQKiq3XIZudwBa7W5O20Ld3a4vIwMwwnHMGPsZuOYw5h_LhdTGZLccICGMBsi9xwQZYSJ4breHy337NRimtAACRS230gGWLnfeUUrOn7INC09Ka2m3Whew9NnvnDzfsKrivRKPzHLLPp8fl9CWfvz3PppN57lFJkYdQ80pJdKFWSpXgwElpDLi60kAYRGlk35SvReW81D4UqkApXX-iWnkxZPen3E3svneUtnbV7WLbv7SoBFcF59L0KjypfOxSihTsJjZrFw-Wgz3CsL8w7BGGPcPoTXcnU0NEf4YSNaBR4gfduVj6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531561148</pqid></control><display><type>article</type><title>Successive Refinement of Privacy</title><source>IEEE Electronic Library (IEL)</source><creator>Girgis, Antonious M. ; Data, Deepesh ; Chaudhuri, Kamalika ; Fragouli, Christina ; Diggavi, Suhas N.</creator><creatorcontrib>Girgis, Antonious M. ; Data, Deepesh ; Chaudhuri, Kamalika ; Fragouli, Christina ; Diggavi, Suhas N.</creatorcontrib><description>This work examines a novel question: how much randomness is needed to achieve local differential privacy (LDP)? A motivating scenario is providing multiple levels of privacy to multiple analysts, either for distribution or for heavy hitter estimation, using the same (randomized) output. We call this setting successive refinement of privacy , as it provides hierarchical access to the raw data with different privacy levels. For example, the same randomized output could enable one analyst to reconstruct the input, while another can only estimate the distribution subject to LDP requirements. This extends the classical Shannon (wiretap) security setting to local differential privacy. We provide (order-wise) tight characterizations of privacy-utility-randomness trade-offs in several cases for distribution estimation, including the standard LDP setting under a randomness constraint. We also provide a non-trivial privacy mechanism for multi-level privacy. Furthermore, we show that we cannot reuse random keys over time while preserving privacy of each user.</description><identifier>ISSN: 2641-8770</identifier><identifier>EISSN: 2641-8770</identifier><identifier>DOI: 10.1109/JSAIT.2020.3040403</identifier><identifier>CODEN: IJSTL5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data privacy ; Differential privacy ; local differential privacy ; multiple levels of privacy ; Privacy ; privacy and learning ; privacy-utility-randomness trade-off ; Randomness ; Upper bound ; Wiretapping</subject><ispartof>IEEE journal on selected areas in information theory, 2020-11, Vol.1 (3), p.745-759</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2543-ffd1b542afd55590a0a44880adb70e2f3984f395cd3bac47cf656244a95ced5c3</citedby><cites>FETCH-LOGICAL-c2543-ffd1b542afd55590a0a44880adb70e2f3984f395cd3bac47cf656244a95ced5c3</cites><orcidid>0000-0003-1002-5829 ; 0000-0003-3544-8414 ; 0000-0001-9828-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9270285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9270285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Girgis, Antonious M.</creatorcontrib><creatorcontrib>Data, Deepesh</creatorcontrib><creatorcontrib>Chaudhuri, Kamalika</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><creatorcontrib>Diggavi, Suhas N.</creatorcontrib><title>Successive Refinement of Privacy</title><title>IEEE journal on selected areas in information theory</title><addtitle>JSAIT</addtitle><description>This work examines a novel question: how much randomness is needed to achieve local differential privacy (LDP)? A motivating scenario is providing multiple levels of privacy to multiple analysts, either for distribution or for heavy hitter estimation, using the same (randomized) output. We call this setting successive refinement of privacy , as it provides hierarchical access to the raw data with different privacy levels. For example, the same randomized output could enable one analyst to reconstruct the input, while another can only estimate the distribution subject to LDP requirements. This extends the classical Shannon (wiretap) security setting to local differential privacy. We provide (order-wise) tight characterizations of privacy-utility-randomness trade-offs in several cases for distribution estimation, including the standard LDP setting under a randomness constraint. We also provide a non-trivial privacy mechanism for multi-level privacy. Furthermore, we show that we cannot reuse random keys over time while preserving privacy of each user.</description><subject>Data privacy</subject><subject>Differential privacy</subject><subject>local differential privacy</subject><subject>multiple levels of privacy</subject><subject>Privacy</subject><subject>privacy and learning</subject><subject>privacy-utility-randomness trade-off</subject><subject>Randomness</subject><subject>Upper bound</subject><subject>Wiretapping</subject><issn>2641-8770</issn><issn>2641-8770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhYMoWGpfQG8WvN46mSSb7GUp_lQKiq3XIZudwBa7W5O20Ld3a4vIwMwwnHMGPsZuOYw5h_LhdTGZLccICGMBsi9xwQZYSJ4breHy337NRimtAACRS230gGWLnfeUUrOn7INC09Ka2m3Whew9NnvnDzfsKrivRKPzHLLPp8fl9CWfvz3PppN57lFJkYdQ80pJdKFWSpXgwElpDLi60kAYRGlk35SvReW81D4UqkApXX-iWnkxZPen3E3svneUtnbV7WLbv7SoBFcF59L0KjypfOxSihTsJjZrFw-Wgz3CsL8w7BGGPcPoTXcnU0NEf4YSNaBR4gfduVj6</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Girgis, Antonious M.</creator><creator>Data, Deepesh</creator><creator>Chaudhuri, Kamalika</creator><creator>Fragouli, Christina</creator><creator>Diggavi, Suhas N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1002-5829</orcidid><orcidid>https://orcid.org/0000-0003-3544-8414</orcidid><orcidid>https://orcid.org/0000-0001-9828-6534</orcidid></search><sort><creationdate>20201101</creationdate><title>Successive Refinement of Privacy</title><author>Girgis, Antonious M. ; Data, Deepesh ; Chaudhuri, Kamalika ; Fragouli, Christina ; Diggavi, Suhas N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2543-ffd1b542afd55590a0a44880adb70e2f3984f395cd3bac47cf656244a95ced5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data privacy</topic><topic>Differential privacy</topic><topic>local differential privacy</topic><topic>multiple levels of privacy</topic><topic>Privacy</topic><topic>privacy and learning</topic><topic>privacy-utility-randomness trade-off</topic><topic>Randomness</topic><topic>Upper bound</topic><topic>Wiretapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girgis, Antonious M.</creatorcontrib><creatorcontrib>Data, Deepesh</creatorcontrib><creatorcontrib>Chaudhuri, Kamalika</creatorcontrib><creatorcontrib>Fragouli, Christina</creatorcontrib><creatorcontrib>Diggavi, Suhas N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on selected areas in information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Girgis, Antonious M.</au><au>Data, Deepesh</au><au>Chaudhuri, Kamalika</au><au>Fragouli, Christina</au><au>Diggavi, Suhas N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successive Refinement of Privacy</atitle><jtitle>IEEE journal on selected areas in information theory</jtitle><stitle>JSAIT</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>1</volume><issue>3</issue><spage>745</spage><epage>759</epage><pages>745-759</pages><issn>2641-8770</issn><eissn>2641-8770</eissn><coden>IJSTL5</coden><abstract>This work examines a novel question: how much randomness is needed to achieve local differential privacy (LDP)? A motivating scenario is providing multiple levels of privacy to multiple analysts, either for distribution or for heavy hitter estimation, using the same (randomized) output. We call this setting successive refinement of privacy , as it provides hierarchical access to the raw data with different privacy levels. For example, the same randomized output could enable one analyst to reconstruct the input, while another can only estimate the distribution subject to LDP requirements. This extends the classical Shannon (wiretap) security setting to local differential privacy. We provide (order-wise) tight characterizations of privacy-utility-randomness trade-offs in several cases for distribution estimation, including the standard LDP setting under a randomness constraint. We also provide a non-trivial privacy mechanism for multi-level privacy. Furthermore, we show that we cannot reuse random keys over time while preserving privacy of each user.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSAIT.2020.3040403</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1002-5829</orcidid><orcidid>https://orcid.org/0000-0003-3544-8414</orcidid><orcidid>https://orcid.org/0000-0001-9828-6534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2641-8770
ispartof IEEE journal on selected areas in information theory, 2020-11, Vol.1 (3), p.745-759
issn 2641-8770
2641-8770
language eng
recordid cdi_proquest_journals_2531561148
source IEEE Electronic Library (IEL)
subjects Data privacy
Differential privacy
local differential privacy
multiple levels of privacy
Privacy
privacy and learning
privacy-utility-randomness trade-off
Randomness
Upper bound
Wiretapping
title Successive Refinement of Privacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successive%20Refinement%20of%20Privacy&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20information%20theory&rft.au=Girgis,%20Antonious%20M.&rft.date=2020-11-01&rft.volume=1&rft.issue=3&rft.spage=745&rft.epage=759&rft.pages=745-759&rft.issn=2641-8770&rft.eissn=2641-8770&rft.coden=IJSTL5&rft_id=info:doi/10.1109/JSAIT.2020.3040403&rft_dat=%3Cproquest_RIE%3E2531561148%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531561148&rft_id=info:pmid/&rft_ieee_id=9270285&rfr_iscdi=true