“Shadow effect” photodetector with linear output voltage vs light intensity
A novel concept for a simple, cost effective, readily integrable with Si electronics and self-powered photodetector is presented. The device consists of a semitransparent Au film deposited on an n-type Si substrate with contacts on the Au layer. The operation of the device relies on the recently dem...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-05, Vol.129 (20) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 129 |
creator | Hourdakis, E. Kaidatzis, A. Niarchos, D. |
description | A novel concept for a simple, cost effective, readily integrable with Si electronics and self-powered photodetector is presented. The device consists of a semitransparent Au film deposited on an n-type Si substrate with contacts on the Au layer. The operation of the device relies on the recently demonstrated “shadow effect.” The device is shown to consist of back-to-back Schottky diodes with a built-in parallel resistance caused by the Au layer. Shadowing half of the device area under illumination causes anisotropy in the diodes' behavior creating a measurable open circuit voltage and a short circuit current. The presence of the built-in parallel resistance, along with a large series resistance, causes the open circuit voltage to have a linear term with respect to illumination power, in addition to the logarithmic term normally present in Schottky solar cells. We demonstrate that under certain combinations of series and parallel resistances the open circuit voltage of the device is linear with respect to illumination power for a range between 50 mW/cm2 (0.5 sun) and 0.5 mW/cm2 (0.005 sun). This allows the device to be used as a photodetector operated as a self-powered voltage source, instead of a current source which is the case with most photodetectors operated in the photovoltaic mode. |
doi_str_mv | 10.1063/5.0048655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531409698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531409698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-eac2424e6911ead7497f964d9bec0c30de525cd581e5fe43be5b82a1c608871e3</originalsourceid><addsrcrecordid>eNqd0M9KAzEQBvAgCtbqwTcIeFJYnWw2u8lRiv-g0IN6Dml2trulbtYkbemtD6Iv1ydxpQXvnoZhfnwDHyGXDG4Z5PxO3AJkMhfiiAwYSJUUQsAxGQCkLJGqUKfkLIQ5AGOSqwGZ7LZfr7Up3ZpiVaGNu-037WoXXYmxX52n6ybWdNG0aDx1y9gtI125RTQzpKvQH2Z1pE0bsQ1N3JyTk8osAl4c5pC8Pz68jZ6T8eTpZXQ_TixPi5igsWmWZpgrxtCURaaKSuVZqaZowXIoUaTClkIyFBVmfIpiKlPDbA5SFgz5kFztczvvPpcYop67pW_7lzoVnGWgciV7db1X1rsQPFa6882H8RvNQP_2pYU-9NXbm70NtokmNq79H145_wd1V1b8B5OGe6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531409698</pqid></control><display><type>article</type><title>“Shadow effect” photodetector with linear output voltage vs light intensity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hourdakis, E. ; Kaidatzis, A. ; Niarchos, D.</creator><creatorcontrib>Hourdakis, E. ; Kaidatzis, A. ; Niarchos, D.</creatorcontrib><description>A novel concept for a simple, cost effective, readily integrable with Si electronics and self-powered photodetector is presented. The device consists of a semitransparent Au film deposited on an n-type Si substrate with contacts on the Au layer. The operation of the device relies on the recently demonstrated “shadow effect.” The device is shown to consist of back-to-back Schottky diodes with a built-in parallel resistance caused by the Au layer. Shadowing half of the device area under illumination causes anisotropy in the diodes' behavior creating a measurable open circuit voltage and a short circuit current. The presence of the built-in parallel resistance, along with a large series resistance, causes the open circuit voltage to have a linear term with respect to illumination power, in addition to the logarithmic term normally present in Schottky solar cells. We demonstrate that under certain combinations of series and parallel resistances the open circuit voltage of the device is linear with respect to illumination power for a range between 50 mW/cm2 (0.5 sun) and 0.5 mW/cm2 (0.005 sun). This allows the device to be used as a photodetector operated as a self-powered voltage source, instead of a current source which is the case with most photodetectors operated in the photovoltaic mode.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0048655</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Circuits ; Current sources ; Illumination ; Luminous intensity ; Open circuit voltage ; Photometers ; Photovoltaic cells ; Schottky diodes ; Shadows ; Short circuit currents ; Silicon substrates ; Solar cells</subject><ispartof>Journal of applied physics, 2021-05, Vol.129 (20)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-eac2424e6911ead7497f964d9bec0c30de525cd581e5fe43be5b82a1c608871e3</citedby><cites>FETCH-LOGICAL-c327t-eac2424e6911ead7497f964d9bec0c30de525cd581e5fe43be5b82a1c608871e3</cites><orcidid>0000-0003-0301-3651 ; 0000-0002-1009-6689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0048655$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Hourdakis, E.</creatorcontrib><creatorcontrib>Kaidatzis, A.</creatorcontrib><creatorcontrib>Niarchos, D.</creatorcontrib><title>“Shadow effect” photodetector with linear output voltage vs light intensity</title><title>Journal of applied physics</title><description>A novel concept for a simple, cost effective, readily integrable with Si electronics and self-powered photodetector is presented. The device consists of a semitransparent Au film deposited on an n-type Si substrate with contacts on the Au layer. The operation of the device relies on the recently demonstrated “shadow effect.” The device is shown to consist of back-to-back Schottky diodes with a built-in parallel resistance caused by the Au layer. Shadowing half of the device area under illumination causes anisotropy in the diodes' behavior creating a measurable open circuit voltage and a short circuit current. The presence of the built-in parallel resistance, along with a large series resistance, causes the open circuit voltage to have a linear term with respect to illumination power, in addition to the logarithmic term normally present in Schottky solar cells. We demonstrate that under certain combinations of series and parallel resistances the open circuit voltage of the device is linear with respect to illumination power for a range between 50 mW/cm2 (0.5 sun) and 0.5 mW/cm2 (0.005 sun). This allows the device to be used as a photodetector operated as a self-powered voltage source, instead of a current source which is the case with most photodetectors operated in the photovoltaic mode.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Circuits</subject><subject>Current sources</subject><subject>Illumination</subject><subject>Luminous intensity</subject><subject>Open circuit voltage</subject><subject>Photometers</subject><subject>Photovoltaic cells</subject><subject>Schottky diodes</subject><subject>Shadows</subject><subject>Short circuit currents</subject><subject>Silicon substrates</subject><subject>Solar cells</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0M9KAzEQBvAgCtbqwTcIeFJYnWw2u8lRiv-g0IN6Dml2trulbtYkbemtD6Iv1ydxpQXvnoZhfnwDHyGXDG4Z5PxO3AJkMhfiiAwYSJUUQsAxGQCkLJGqUKfkLIQ5AGOSqwGZ7LZfr7Up3ZpiVaGNu-037WoXXYmxX52n6ybWdNG0aDx1y9gtI125RTQzpKvQH2Z1pE0bsQ1N3JyTk8osAl4c5pC8Pz68jZ6T8eTpZXQ_TixPi5igsWmWZpgrxtCURaaKSuVZqaZowXIoUaTClkIyFBVmfIpiKlPDbA5SFgz5kFztczvvPpcYop67pW_7lzoVnGWgciV7db1X1rsQPFa6882H8RvNQP_2pYU-9NXbm70NtokmNq79H145_wd1V1b8B5OGe6s</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Hourdakis, E.</creator><creator>Kaidatzis, A.</creator><creator>Niarchos, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0301-3651</orcidid><orcidid>https://orcid.org/0000-0002-1009-6689</orcidid></search><sort><creationdate>20210528</creationdate><title>“Shadow effect” photodetector with linear output voltage vs light intensity</title><author>Hourdakis, E. ; Kaidatzis, A. ; Niarchos, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-eac2424e6911ead7497f964d9bec0c30de525cd581e5fe43be5b82a1c608871e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Circuits</topic><topic>Current sources</topic><topic>Illumination</topic><topic>Luminous intensity</topic><topic>Open circuit voltage</topic><topic>Photometers</topic><topic>Photovoltaic cells</topic><topic>Schottky diodes</topic><topic>Shadows</topic><topic>Short circuit currents</topic><topic>Silicon substrates</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hourdakis, E.</creatorcontrib><creatorcontrib>Kaidatzis, A.</creatorcontrib><creatorcontrib>Niarchos, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hourdakis, E.</au><au>Kaidatzis, A.</au><au>Niarchos, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Shadow effect” photodetector with linear output voltage vs light intensity</atitle><jtitle>Journal of applied physics</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>129</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A novel concept for a simple, cost effective, readily integrable with Si electronics and self-powered photodetector is presented. The device consists of a semitransparent Au film deposited on an n-type Si substrate with contacts on the Au layer. The operation of the device relies on the recently demonstrated “shadow effect.” The device is shown to consist of back-to-back Schottky diodes with a built-in parallel resistance caused by the Au layer. Shadowing half of the device area under illumination causes anisotropy in the diodes' behavior creating a measurable open circuit voltage and a short circuit current. The presence of the built-in parallel resistance, along with a large series resistance, causes the open circuit voltage to have a linear term with respect to illumination power, in addition to the logarithmic term normally present in Schottky solar cells. We demonstrate that under certain combinations of series and parallel resistances the open circuit voltage of the device is linear with respect to illumination power for a range between 50 mW/cm2 (0.5 sun) and 0.5 mW/cm2 (0.005 sun). This allows the device to be used as a photodetector operated as a self-powered voltage source, instead of a current source which is the case with most photodetectors operated in the photovoltaic mode.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0048655</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0301-3651</orcidid><orcidid>https://orcid.org/0000-0002-1009-6689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-05, Vol.129 (20) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2531409698 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Applied physics Circuits Current sources Illumination Luminous intensity Open circuit voltage Photometers Photovoltaic cells Schottky diodes Shadows Short circuit currents Silicon substrates Solar cells |
title | “Shadow effect” photodetector with linear output voltage vs light intensity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CShadow%20effect%E2%80%9D%20photodetector%20with%20linear%20output%20voltage%20vs%20light%20intensity&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hourdakis,%20E.&rft.date=2021-05-28&rft.volume=129&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0048655&rft_dat=%3Cproquest_cross%3E2531409698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531409698&rft_id=info:pmid/&rfr_iscdi=true |