Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay

To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of Mathematics 2021-06, Vol.66 (3), p.397-411
Hauptverfasser: Cheng, Ye, Shi, Bao, Ding, Liangliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 3
container_start_page 397
container_title Applications of Mathematics
container_volume 66
creator Cheng, Ye
Shi, Bao
Ding, Liangliang
description To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.
doi_str_mv 10.21136/AM.2021.0341-19
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531293862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531293862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-97cc6b4c83c1b247007fa4337d558ce13175178aafdc994272ff0dfae3e5c4b83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM1pidvHZSWyPUcuX1JaBwmq5jl1StU6xU1X596QUiYnplud57-5F6BboiAHw4r6cjRhlMKI8AwLqDA0gF4wooOocDagsGBEqo5foKqU1pVQVUg7QfNyE5ELaJ9x4bPDi0JBy5UKL37rUui0-1O0nnjdhUwdnIp50wWxrm7AJFV7UW0c-TOzqsMITtzHdNbrwZpPcze8covfHh8X4mUxfn17G5ZRYTmVLlLC2WGZWcgtLlglKhTcZ56LKc2kdcBA5CGmMr6xSGRPMe1p547jLbbaUfIjuTrm72HztXWr1utnH0K_ULOfAFO__7Sl6omxsUorO612st_29Gqj-aU2XM31sTR9b06B6BU5K6tGwcvEv-F_nG7eVbgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531293862</pqid></control><display><type>article</type><title>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Ye ; Shi, Bao ; Ding, Liangliang</creator><creatorcontrib>Cheng, Ye ; Shi, Bao ; Ding, Liangliang</creatorcontrib><description>To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2021.0341-19</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Classical and Continuum Physics ; Dynamical systems ; Hopf bifurcation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear dynamics ; Optimization ; Theoretical ; Time lag</subject><ispartof>Applications of Mathematics, 2021-06, Vol.66 (3), p.397-411</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2021.0341-19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2021.0341-19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cheng, Ye</creatorcontrib><creatorcontrib>Shi, Bao</creatorcontrib><creatorcontrib>Ding, Liangliang</creatorcontrib><title>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</title><title>Applications of Mathematics</title><addtitle>Appl Math</addtitle><description>To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Dynamical systems</subject><subject>Hopf bifurcation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Theoretical</subject><subject>Time lag</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM1pidvHZSWyPUcuX1JaBwmq5jl1StU6xU1X596QUiYnplud57-5F6BboiAHw4r6cjRhlMKI8AwLqDA0gF4wooOocDagsGBEqo5foKqU1pVQVUg7QfNyE5ELaJ9x4bPDi0JBy5UKL37rUui0-1O0nnjdhUwdnIp50wWxrm7AJFV7UW0c-TOzqsMITtzHdNbrwZpPcze8covfHh8X4mUxfn17G5ZRYTmVLlLC2WGZWcgtLlglKhTcZ56LKc2kdcBA5CGmMr6xSGRPMe1p547jLbbaUfIjuTrm72HztXWr1utnH0K_ULOfAFO__7Sl6omxsUorO612st_29Gqj-aU2XM31sTR9b06B6BU5K6tGwcvEv-F_nG7eVbgc</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cheng, Ye</creator><creator>Shi, Bao</creator><creator>Ding, Liangliang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210601</creationdate><title>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</title><author>Cheng, Ye ; Shi, Bao ; Ding, Liangliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-97cc6b4c83c1b247007fa4337d558ce13175178aafdc994272ff0dfae3e5c4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Dynamical systems</topic><topic>Hopf bifurcation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Theoretical</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Ye</creatorcontrib><creatorcontrib>Shi, Bao</creatorcontrib><creatorcontrib>Ding, Liangliang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applications of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Ye</au><au>Shi, Bao</au><au>Ding, Liangliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</atitle><jtitle>Applications of Mathematics</jtitle><stitle>Appl Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>66</volume><issue>3</issue><spage>397</spage><epage>411</epage><pages>397-411</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2021.0341-19</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of Mathematics, 2021-06, Vol.66 (3), p.397-411
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_journals_2531293862
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Analysis
Applications of Mathematics
Classical and Continuum Physics
Dynamical systems
Hopf bifurcation
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear dynamics
Optimization
Theoretical
Time lag
title Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20of%20a%20Two-Agent%20System%20with%20Nonlinear%20Dynamics%20and%20Time-Varying%20Delay&rft.jtitle=Applications%20of%20Mathematics&rft.au=Cheng,%20Ye&rft.date=2021-06-01&rft.volume=66&rft.issue=3&rft.spage=397&rft.epage=411&rft.pages=397-411&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2021.0341-19&rft_dat=%3Cproquest_cross%3E2531293862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531293862&rft_id=info:pmid/&rfr_iscdi=true