Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay
To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus....
Gespeichert in:
Veröffentlicht in: | Applications of Mathematics 2021-06, Vol.66 (3), p.397-411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 3 |
container_start_page | 397 |
container_title | Applications of Mathematics |
container_volume | 66 |
creator | Cheng, Ye Shi, Bao Ding, Liangliang |
description | To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes. |
doi_str_mv | 10.21136/AM.2021.0341-19 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531293862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531293862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-97cc6b4c83c1b247007fa4337d558ce13175178aafdc994272ff0dfae3e5c4b83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM1pidvHZSWyPUcuX1JaBwmq5jl1StU6xU1X596QUiYnplud57-5F6BboiAHw4r6cjRhlMKI8AwLqDA0gF4wooOocDagsGBEqo5foKqU1pVQVUg7QfNyE5ELaJ9x4bPDi0JBy5UKL37rUui0-1O0nnjdhUwdnIp50wWxrm7AJFV7UW0c-TOzqsMITtzHdNbrwZpPcze8covfHh8X4mUxfn17G5ZRYTmVLlLC2WGZWcgtLlglKhTcZ56LKc2kdcBA5CGmMr6xSGRPMe1p547jLbbaUfIjuTrm72HztXWr1utnH0K_ULOfAFO__7Sl6omxsUorO612st_29Gqj-aU2XM31sTR9b06B6BU5K6tGwcvEv-F_nG7eVbgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531293862</pqid></control><display><type>article</type><title>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Ye ; Shi, Bao ; Ding, Liangliang</creator><creatorcontrib>Cheng, Ye ; Shi, Bao ; Ding, Liangliang</creatorcontrib><description>To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2021.0341-19</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Classical and Continuum Physics ; Dynamical systems ; Hopf bifurcation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear dynamics ; Optimization ; Theoretical ; Time lag</subject><ispartof>Applications of Mathematics, 2021-06, Vol.66 (3), p.397-411</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2021.0341-19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2021.0341-19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cheng, Ye</creatorcontrib><creatorcontrib>Shi, Bao</creatorcontrib><creatorcontrib>Ding, Liangliang</creatorcontrib><title>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</title><title>Applications of Mathematics</title><addtitle>Appl Math</addtitle><description>To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Dynamical systems</subject><subject>Hopf bifurcation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Theoretical</subject><subject>Time lag</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM1pidvHZSWyPUcuX1JaBwmq5jl1StU6xU1X596QUiYnplud57-5F6BboiAHw4r6cjRhlMKI8AwLqDA0gF4wooOocDagsGBEqo5foKqU1pVQVUg7QfNyE5ELaJ9x4bPDi0JBy5UKL37rUui0-1O0nnjdhUwdnIp50wWxrm7AJFV7UW0c-TOzqsMITtzHdNbrwZpPcze8covfHh8X4mUxfn17G5ZRYTmVLlLC2WGZWcgtLlglKhTcZ56LKc2kdcBA5CGmMr6xSGRPMe1p547jLbbaUfIjuTrm72HztXWr1utnH0K_ULOfAFO__7Sl6omxsUorO612st_29Gqj-aU2XM31sTR9b06B6BU5K6tGwcvEv-F_nG7eVbgc</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cheng, Ye</creator><creator>Shi, Bao</creator><creator>Ding, Liangliang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210601</creationdate><title>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</title><author>Cheng, Ye ; Shi, Bao ; Ding, Liangliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-97cc6b4c83c1b247007fa4337d558ce13175178aafdc994272ff0dfae3e5c4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Dynamical systems</topic><topic>Hopf bifurcation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Theoretical</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Ye</creatorcontrib><creatorcontrib>Shi, Bao</creatorcontrib><creatorcontrib>Ding, Liangliang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applications of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Ye</au><au>Shi, Bao</au><au>Ding, Liangliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay</atitle><jtitle>Applications of Mathematics</jtitle><stitle>Appl Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>66</volume><issue>3</issue><spage>397</spage><epage>411</epage><pages>397-411</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2021.0341-19</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-7940 |
ispartof | Applications of Mathematics, 2021-06, Vol.66 (3), p.397-411 |
issn | 0862-7940 1572-9109 |
language | eng |
recordid | cdi_proquest_journals_2531293862 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Analysis Applications of Mathematics Classical and Continuum Physics Dynamical systems Hopf bifurcation Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinear dynamics Optimization Theoretical Time lag |
title | Consensus of a Two-Agent System with Nonlinear Dynamics and Time-Varying Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20of%20a%20Two-Agent%20System%20with%20Nonlinear%20Dynamics%20and%20Time-Varying%20Delay&rft.jtitle=Applications%20of%20Mathematics&rft.au=Cheng,%20Ye&rft.date=2021-06-01&rft.volume=66&rft.issue=3&rft.spage=397&rft.epage=411&rft.pages=397-411&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2021.0341-19&rft_dat=%3Cproquest_cross%3E2531293862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531293862&rft_id=info:pmid/&rfr_iscdi=true |