AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries
Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2021-05, Vol.8 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 8 |
creator | Rikarte, Jokin Madinabeitia, Iñaki Baraldi, Giorgio Fernández‐Carretero, Francisco José Bellido‐González, Víctor García‐Luis, Alberto Muñoz‐Márquez, Miguel Ángel |
description | Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance. |
doi_str_mv | 10.1002/admi.202002125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531290671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531290671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEhV0ZbbEnOJHncRsoVAaqRVIFNbITezEVeIEOxHqxsLOb-SX4La8NqZ7dfSde3SP550hOEIQ4gue12qEIXY7wvTAG2DEAj8kFB7-2Y-9obVrCCFCDovIwHuLJ2DBCy0602jw0PZdJ4zSxSWINUh03tvOKF6BuG1Nw7MSyMaAmSrKj9f3p6bqeCEA1_m3dC-MA2quMwGWpdJOmqqqBhPelU0u7M4-V05OXNwV36UJe-odSV5ZMfyaJ97j9GY5mfnzu9tkEs_9jNCA-pFELBwTPI4gzjMmV0RSLlcQM87CPOA0EBKLTEaMhQRhyMZRMJaUUIKzCKGQnHjn-7vumede2C5dN73RLjLF1DkYDELkqNGeykxjrREybY2qudmkCKbbttNt2-lP287A9oYXVYnNP3QaXy-SX-8nqO2Ggg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531290671</pqid></control><display><type>article</type><title>AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries</title><source>Access via Wiley Online Library</source><creator>Rikarte, Jokin ; Madinabeitia, Iñaki ; Baraldi, Giorgio ; Fernández‐Carretero, Francisco José ; Bellido‐González, Víctor ; García‐Luis, Alberto ; Muñoz‐Márquez, Miguel Ángel</creator><creatorcontrib>Rikarte, Jokin ; Madinabeitia, Iñaki ; Baraldi, Giorgio ; Fernández‐Carretero, Francisco José ; Bellido‐González, Víctor ; García‐Luis, Alberto ; Muñoz‐Márquez, Miguel Ángel</creatorcontrib><description>Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202002125</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>AC magnetron sputtering ; Alternating current ; Annealing ; Cathodes ; Chemical composition ; Crystal structure ; Crystallization ; Evolution ; LiNi 0.5Mn 1.5O 4 ; Lithium-ion batteries ; Li‐ion batteries ; Magnetron sputtering ; Morphology ; Oxidation ; Photoelectrons ; Raman ; Raman spectroscopy ; Room temperature ; Spectrum analysis ; Spinel ; Substrates ; Temperature ; Thin films ; thin‐film cathodes ; X‐ray photoelectron spectroscopy</subject><ispartof>Advanced materials interfaces, 2021-05, Vol.8 (10), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173</citedby><cites>FETCH-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173</cites><orcidid>0000-0002-5351-828X ; 0000-0002-5026-7921 ; 0000-0003-2403-1568 ; 0000-0003-1896-9365 ; 0000-0003-4350-8368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202002125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202002125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rikarte, Jokin</creatorcontrib><creatorcontrib>Madinabeitia, Iñaki</creatorcontrib><creatorcontrib>Baraldi, Giorgio</creatorcontrib><creatorcontrib>Fernández‐Carretero, Francisco José</creatorcontrib><creatorcontrib>Bellido‐González, Víctor</creatorcontrib><creatorcontrib>García‐Luis, Alberto</creatorcontrib><creatorcontrib>Muñoz‐Márquez, Miguel Ángel</creatorcontrib><title>AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries</title><title>Advanced materials interfaces</title><description>Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance.</description><subject>AC magnetron sputtering</subject><subject>Alternating current</subject><subject>Annealing</subject><subject>Cathodes</subject><subject>Chemical composition</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Evolution</subject><subject>LiNi 0.5Mn 1.5O 4</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Magnetron sputtering</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Photoelectrons</subject><subject>Raman</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Spectrum analysis</subject><subject>Spinel</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Thin films</subject><subject>thin‐film cathodes</subject><subject>X‐ray photoelectron spectroscopy</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEhV0ZbbEnOJHncRsoVAaqRVIFNbITezEVeIEOxHqxsLOb-SX4La8NqZ7dfSde3SP550hOEIQ4gue12qEIXY7wvTAG2DEAj8kFB7-2Y-9obVrCCFCDovIwHuLJ2DBCy0602jw0PZdJ4zSxSWINUh03tvOKF6BuG1Nw7MSyMaAmSrKj9f3p6bqeCEA1_m3dC-MA2quMwGWpdJOmqqqBhPelU0u7M4-V05OXNwV36UJe-odSV5ZMfyaJ97j9GY5mfnzu9tkEs_9jNCA-pFELBwTPI4gzjMmV0RSLlcQM87CPOA0EBKLTEaMhQRhyMZRMJaUUIKzCKGQnHjn-7vumede2C5dN73RLjLF1DkYDELkqNGeykxjrREybY2qudmkCKbbttNt2-lP287A9oYXVYnNP3QaXy-SX-8nqO2Ggg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rikarte, Jokin</creator><creator>Madinabeitia, Iñaki</creator><creator>Baraldi, Giorgio</creator><creator>Fernández‐Carretero, Francisco José</creator><creator>Bellido‐González, Víctor</creator><creator>García‐Luis, Alberto</creator><creator>Muñoz‐Márquez, Miguel Ángel</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5351-828X</orcidid><orcidid>https://orcid.org/0000-0002-5026-7921</orcidid><orcidid>https://orcid.org/0000-0003-2403-1568</orcidid><orcidid>https://orcid.org/0000-0003-1896-9365</orcidid><orcidid>https://orcid.org/0000-0003-4350-8368</orcidid></search><sort><creationdate>20210501</creationdate><title>AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries</title><author>Rikarte, Jokin ; Madinabeitia, Iñaki ; Baraldi, Giorgio ; Fernández‐Carretero, Francisco José ; Bellido‐González, Víctor ; García‐Luis, Alberto ; Muñoz‐Márquez, Miguel Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AC magnetron sputtering</topic><topic>Alternating current</topic><topic>Annealing</topic><topic>Cathodes</topic><topic>Chemical composition</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Evolution</topic><topic>LiNi 0.5Mn 1.5O 4</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Magnetron sputtering</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Photoelectrons</topic><topic>Raman</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Spectrum analysis</topic><topic>Spinel</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Thin films</topic><topic>thin‐film cathodes</topic><topic>X‐ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikarte, Jokin</creatorcontrib><creatorcontrib>Madinabeitia, Iñaki</creatorcontrib><creatorcontrib>Baraldi, Giorgio</creatorcontrib><creatorcontrib>Fernández‐Carretero, Francisco José</creatorcontrib><creatorcontrib>Bellido‐González, Víctor</creatorcontrib><creatorcontrib>García‐Luis, Alberto</creatorcontrib><creatorcontrib>Muñoz‐Márquez, Miguel Ángel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikarte, Jokin</au><au>Madinabeitia, Iñaki</au><au>Baraldi, Giorgio</au><au>Fernández‐Carretero, Francisco José</au><au>Bellido‐González, Víctor</au><au>García‐Luis, Alberto</au><au>Muñoz‐Márquez, Miguel Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries</atitle><jtitle>Advanced materials interfaces</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>10</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.202002125</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5351-828X</orcidid><orcidid>https://orcid.org/0000-0002-5026-7921</orcidid><orcidid>https://orcid.org/0000-0003-2403-1568</orcidid><orcidid>https://orcid.org/0000-0003-1896-9365</orcidid><orcidid>https://orcid.org/0000-0003-4350-8368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2021-05, Vol.8 (10), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2531290671 |
source | Access via Wiley Online Library |
subjects | AC magnetron sputtering Alternating current Annealing Cathodes Chemical composition Crystal structure Crystallization Evolution LiNi 0.5Mn 1.5O 4 Lithium-ion batteries Li‐ion batteries Magnetron sputtering Morphology Oxidation Photoelectrons Raman Raman spectroscopy Room temperature Spectrum analysis Spinel Substrates Temperature Thin films thin‐film cathodes X‐ray photoelectron spectroscopy |
title | AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AC%20Magnetron%20Sputtering:%20An%20Industrial%20Approach%20for%20High%E2%80%90Voltage%20and%20High%E2%80%90Performance%20Thin%E2%80%90Film%20Cathodes%20for%20Li%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Rikarte,%20Jokin&rft.date=2021-05-01&rft.volume=8&rft.issue=10&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202002125&rft_dat=%3Cproquest_cross%3E2531290671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531290671&rft_id=info:pmid/&rfr_iscdi=true |