Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies
Here, highly efficient and stable monolithic (2‐terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passiva...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-05, Vol.31 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Tavakoli, Mohammad Mahdi Dastjerdi, Hadi Tavakoli Yadav, Pankaj Prochowicz, Daniel Si, Huayan Tavakoli, Rouhollah |
description | Here, highly efficient and stable monolithic (2‐terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs‐based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open‐circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs.
Here, monolithic perovskite/PbS quantum dots tandem solar cells are developed using interface engineering, light management techniques, and a device with a stabilized efficiency of 17.1%, and excellent stability is achieved. |
doi_str_mv | 10.1002/adfm.202010623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531176832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531176832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-79fc54ad44f326895000b9445355741ce500205576cf3a4029d6997bf46fd923</originalsourceid><addsrcrecordid>eNqFULtOwzAUjRBIlMLKbIk5rV9J6rHqA5BaUZQObJHj2K1LEhfbKepP8M2kDYKR6R6dex7SCYJ7BAcIQjzkhaoGGGKIYIzJRdBDMYpDAvHo8hejt-vgxrkdhChJCO0FX-Mq17L2IPU8LyXgdQFmSmlxJpemNqX2Wy3Auv3ICqykNQf3rr0crvIUvDa89k0FpsY7kJqSWzCRZenAQXOQNlZxIcGKO6cP3GtTn_MXerNts3nNN7Lqui33cqOluw2uFC-dvPu5_WA9n60nT-Hi5fF5Ml6EgmJCwoQpEVFeUKoIjkcsghDmjNKIRFFCkZAtgWGLY6EIpxCzImYsyRWNVcEw6QcPXezemo9GOp_tTGPrtjHDEUEoiUfkpBp0KmGNc1aqbG91xe0xQzA7TZ6dJs9-J28NrDN86lIe_1Fn4-l8-ef9BqoRhWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531176832</pqid></control><display><type>article</type><title>Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies</title><source>Wiley Journals</source><creator>Tavakoli, Mohammad Mahdi ; Dastjerdi, Hadi Tavakoli ; Yadav, Pankaj ; Prochowicz, Daniel ; Si, Huayan ; Tavakoli, Rouhollah</creator><creatorcontrib>Tavakoli, Mohammad Mahdi ; Dastjerdi, Hadi Tavakoli ; Yadav, Pankaj ; Prochowicz, Daniel ; Si, Huayan ; Tavakoli, Rouhollah</creatorcontrib><description>Here, highly efficient and stable monolithic (2‐terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs‐based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open‐circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs.
Here, monolithic perovskite/PbS quantum dots tandem solar cells are developed using interface engineering, light management techniques, and a device with a stabilized efficiency of 17.1%, and excellent stability is achieved.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010623</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Circuits ; Control stability ; Electron transport ; Energy conversion efficiency ; Energy gap ; Materials science ; Maximum power ; Nanowires ; Optimization ; Passivity ; PbS quantum dots ; Perovskites ; Photovoltaic cells ; Quantum dots ; Relative humidity ; Solar cells ; stability ; tandem devices ; Tin dioxide ; Zinc oxide</subject><ispartof>Advanced functional materials, 2021-05, Vol.31 (21), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-79fc54ad44f326895000b9445355741ce500205576cf3a4029d6997bf46fd923</citedby><cites>FETCH-LOGICAL-c4233-79fc54ad44f326895000b9445355741ce500205576cf3a4029d6997bf46fd923</cites><orcidid>0000-0002-8503-8889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202010623$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202010623$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tavakoli, Mohammad Mahdi</creatorcontrib><creatorcontrib>Dastjerdi, Hadi Tavakoli</creatorcontrib><creatorcontrib>Yadav, Pankaj</creatorcontrib><creatorcontrib>Prochowicz, Daniel</creatorcontrib><creatorcontrib>Si, Huayan</creatorcontrib><creatorcontrib>Tavakoli, Rouhollah</creatorcontrib><title>Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies</title><title>Advanced functional materials</title><description>Here, highly efficient and stable monolithic (2‐terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs‐based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open‐circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs.
Here, monolithic perovskite/PbS quantum dots tandem solar cells are developed using interface engineering, light management techniques, and a device with a stabilized efficiency of 17.1%, and excellent stability is achieved.</description><subject>Circuits</subject><subject>Control stability</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Materials science</subject><subject>Maximum power</subject><subject>Nanowires</subject><subject>Optimization</subject><subject>Passivity</subject><subject>PbS quantum dots</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>stability</subject><subject>tandem devices</subject><subject>Tin dioxide</subject><subject>Zinc oxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUjRBIlMLKbIk5rV9J6rHqA5BaUZQObJHj2K1LEhfbKepP8M2kDYKR6R6dex7SCYJ7BAcIQjzkhaoGGGKIYIzJRdBDMYpDAvHo8hejt-vgxrkdhChJCO0FX-Mq17L2IPU8LyXgdQFmSmlxJpemNqX2Wy3Auv3ICqykNQf3rr0crvIUvDa89k0FpsY7kJqSWzCRZenAQXOQNlZxIcGKO6cP3GtTn_MXerNts3nNN7Lqui33cqOluw2uFC-dvPu5_WA9n60nT-Hi5fF5Ml6EgmJCwoQpEVFeUKoIjkcsghDmjNKIRFFCkZAtgWGLY6EIpxCzImYsyRWNVcEw6QcPXezemo9GOp_tTGPrtjHDEUEoiUfkpBp0KmGNc1aqbG91xe0xQzA7TZ6dJs9-J28NrDN86lIe_1Fn4-l8-ef9BqoRhWk</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Tavakoli, Mohammad Mahdi</creator><creator>Dastjerdi, Hadi Tavakoli</creator><creator>Yadav, Pankaj</creator><creator>Prochowicz, Daniel</creator><creator>Si, Huayan</creator><creator>Tavakoli, Rouhollah</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8503-8889</orcidid></search><sort><creationdate>20210501</creationdate><title>Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies</title><author>Tavakoli, Mohammad Mahdi ; Dastjerdi, Hadi Tavakoli ; Yadav, Pankaj ; Prochowicz, Daniel ; Si, Huayan ; Tavakoli, Rouhollah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-79fc54ad44f326895000b9445355741ce500205576cf3a4029d6997bf46fd923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Control stability</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Materials science</topic><topic>Maximum power</topic><topic>Nanowires</topic><topic>Optimization</topic><topic>Passivity</topic><topic>PbS quantum dots</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>stability</topic><topic>tandem devices</topic><topic>Tin dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavakoli, Mohammad Mahdi</creatorcontrib><creatorcontrib>Dastjerdi, Hadi Tavakoli</creatorcontrib><creatorcontrib>Yadav, Pankaj</creatorcontrib><creatorcontrib>Prochowicz, Daniel</creatorcontrib><creatorcontrib>Si, Huayan</creatorcontrib><creatorcontrib>Tavakoli, Rouhollah</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavakoli, Mohammad Mahdi</au><au>Dastjerdi, Hadi Tavakoli</au><au>Yadav, Pankaj</au><au>Prochowicz, Daniel</au><au>Si, Huayan</au><au>Tavakoli, Rouhollah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies</atitle><jtitle>Advanced functional materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Here, highly efficient and stable monolithic (2‐terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs‐based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open‐circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs.
Here, monolithic perovskite/PbS quantum dots tandem solar cells are developed using interface engineering, light management techniques, and a device with a stabilized efficiency of 17.1%, and excellent stability is achieved.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202010623</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8503-8889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-05, Vol.31 (21), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2531176832 |
source | Wiley Journals |
subjects | Circuits Control stability Electron transport Energy conversion efficiency Energy gap Materials science Maximum power Nanowires Optimization Passivity PbS quantum dots Perovskites Photovoltaic cells Quantum dots Relative humidity Solar cells stability tandem devices Tin dioxide Zinc oxide |
title | Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambient%20Stable%20and%20Efficient%20Monolithic%20Tandem%20Perovskite/PbS%20Quantum%20Dots%20Solar%20Cells%20via%20Surface%20Passivation%20and%20Light%20Management%20Strategies&rft.jtitle=Advanced%20functional%20materials&rft.au=Tavakoli,%20Mohammad%20Mahdi&rft.date=2021-05-01&rft.volume=31&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010623&rft_dat=%3Cproquest_cross%3E2531176832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531176832&rft_id=info:pmid/&rfr_iscdi=true |