Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect
The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi 3+ ) could effec...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2021-06, Vol.413 (14), p.3655-3665 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3665 |
---|---|
container_issue | 14 |
container_start_page | 3655 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 413 |
creator | Zhang, Kehui Zhou, Xibin Xue, Xin Luo, Mingyue Liu, Xiuhui Xue, Zhonghua |
description | The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi
3+
) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi
3+
ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi
3+
ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi
3+
ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi
3+
ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field. |
doi_str_mv | 10.1007/s00216-021-03312-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2530776103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662761821</galeid><sourcerecordid>A662761821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</originalsourceid><addsrcrecordid>eNp9UU1rFTEUHcRia_UPuJCA66n5mGQmy1LUFgp2YdfhTuZmXsqbpCYZ5HXtDzf11SeClMDN5eacQ-45TfOO0TNGaf8xU8qZamtpqRCMt_pFc8IUG1quJH156Dt-3LzO-Y5SJgemXjXHQgxc816dND9vNrHEssG0xAVL8pZAgO0u-0yiI6PPy1o2xMeQyZp9mAnMc8IZSh21PkyrxYkECPFhtyDJu1xwIT985QApkGYsbVWdZ0wVl9fkwCKxW4TwKIbOoS1vmiMH24xvn-7T5vbzp28Xl-311y9XF-fXre16XVo5OgpdT3mnJQxKS-3ESCXC6Do5jHTgChwC9t1kJUc56FGDADvSCSRTSpw2H_a69yl-XzEXcxfXVNfNhktB-16xauQBNcMWjQ8ulgR28dmac6Wqa2zgrKLO_oOqZ8LF2xjQ-Tr_h8D3BJtizgmduU9-gbQzjJrHPM0-T1OL-Z2n0ZX0_unH67jgdKD8CbACxB6Q61OoLv9d6RnZXwzmrNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530776103</pqid></control><display><type>article</type><title>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Kehui ; Zhou, Xibin ; Xue, Xin ; Luo, Mingyue ; Liu, Xiuhui ; Xue, Zhonghua</creator><creatorcontrib>Zhang, Kehui ; Zhou, Xibin ; Xue, Xin ; Luo, Mingyue ; Liu, Xiuhui ; Xue, Zhonghua</creatorcontrib><description>The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi
3+
) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi
3+
ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi
3+
ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi
3+
ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi
3+
ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03312-9</identifier><identifier>PMID: 33829276</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agglomeration ; Analytical Chemistry ; Biochemistry ; Bismuth ; Catalytic activity ; Cetyltrimethylammonium bromide ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Citric acid ; Cleaning ; Electrostatic properties ; Food Science ; Gold ; Heavy metals ; Ions ; Laboratory Medicine ; Ligands ; Medical tests ; Metal ions ; Methods ; Monitoring/Environmental Analysis ; Nanoparticles ; Optical properties ; Oxidation ; Peroxidase ; Physiological aspects ; Research Paper ; Substrates ; Thermal properties</subject><ispartof>Analytical and bioanalytical chemistry, 2021-06, Vol.413 (14), p.3655-3665</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</citedby><cites>FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03312-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03312-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33829276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kehui</creatorcontrib><creatorcontrib>Zhou, Xibin</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Luo, Mingyue</creatorcontrib><creatorcontrib>Liu, Xiuhui</creatorcontrib><creatorcontrib>Xue, Zhonghua</creatorcontrib><title>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi
3+
) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi
3+
ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi
3+
ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi
3+
ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi
3+
ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.</description><subject>Agglomeration</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Bismuth</subject><subject>Catalytic activity</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Citric acid</subject><subject>Cleaning</subject><subject>Electrostatic properties</subject><subject>Food Science</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Ions</subject><subject>Laboratory Medicine</subject><subject>Ligands</subject><subject>Medical tests</subject><subject>Metal ions</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Peroxidase</subject><subject>Physiological aspects</subject><subject>Research Paper</subject><subject>Substrates</subject><subject>Thermal properties</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1rFTEUHcRia_UPuJCA66n5mGQmy1LUFgp2YdfhTuZmXsqbpCYZ5HXtDzf11SeClMDN5eacQ-45TfOO0TNGaf8xU8qZamtpqRCMt_pFc8IUG1quJH156Dt-3LzO-Y5SJgemXjXHQgxc816dND9vNrHEssG0xAVL8pZAgO0u-0yiI6PPy1o2xMeQyZp9mAnMc8IZSh21PkyrxYkECPFhtyDJu1xwIT985QApkGYsbVWdZ0wVl9fkwCKxW4TwKIbOoS1vmiMH24xvn-7T5vbzp28Xl-311y9XF-fXre16XVo5OgpdT3mnJQxKS-3ESCXC6Do5jHTgChwC9t1kJUc56FGDADvSCSRTSpw2H_a69yl-XzEXcxfXVNfNhktB-16xauQBNcMWjQ8ulgR28dmac6Wqa2zgrKLO_oOqZ8LF2xjQ-Tr_h8D3BJtizgmduU9-gbQzjJrHPM0-T1OL-Z2n0ZX0_unH67jgdKD8CbACxB6Q61OoLv9d6RnZXwzmrNw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kehui</creator><creator>Zhou, Xibin</creator><creator>Xue, Xin</creator><creator>Luo, Mingyue</creator><creator>Liu, Xiuhui</creator><creator>Xue, Zhonghua</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</title><author>Zhang, Kehui ; Zhou, Xibin ; Xue, Xin ; Luo, Mingyue ; Liu, Xiuhui ; Xue, Zhonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Bismuth</topic><topic>Catalytic activity</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Citric acid</topic><topic>Cleaning</topic><topic>Electrostatic properties</topic><topic>Food Science</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Ions</topic><topic>Laboratory Medicine</topic><topic>Ligands</topic><topic>Medical tests</topic><topic>Metal ions</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Peroxidase</topic><topic>Physiological aspects</topic><topic>Research Paper</topic><topic>Substrates</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kehui</creatorcontrib><creatorcontrib>Zhou, Xibin</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Luo, Mingyue</creatorcontrib><creatorcontrib>Liu, Xiuhui</creatorcontrib><creatorcontrib>Xue, Zhonghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kehui</au><au>Zhou, Xibin</au><au>Xue, Xin</au><au>Luo, Mingyue</au><au>Liu, Xiuhui</au><au>Xue, Zhonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>413</volume><issue>14</issue><spage>3655</spage><epage>3665</epage><pages>3655-3665</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi
3+
) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi
3+
ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi
3+
ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi
3+
ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi
3+
ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33829276</pmid><doi>10.1007/s00216-021-03312-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2021-06, Vol.413 (14), p.3655-3665 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_journals_2530776103 |
source | Springer Nature - Complete Springer Journals |
subjects | Agglomeration Analytical Chemistry Biochemistry Bismuth Catalytic activity Cetyltrimethylammonium bromide Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Citric acid Cleaning Electrostatic properties Food Science Gold Heavy metals Ions Laboratory Medicine Ligands Medical tests Metal ions Methods Monitoring/Environmental Analysis Nanoparticles Optical properties Oxidation Peroxidase Physiological aspects Research Paper Substrates Thermal properties |
title | Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photothermometric%20analysis%20of%20bismuth%20ions%20using%20aggregation-induced%20nanozyme%20system%20with%20a%20target-triggered%20surface%20cleaning%20effect&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Zhang,%20Kehui&rft.date=2021-06-01&rft.volume=413&rft.issue=14&rft.spage=3655&rft.epage=3665&rft.pages=3655-3665&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03312-9&rft_dat=%3Cgale_proqu%3EA662761821%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530776103&rft_id=info:pmid/33829276&rft_galeid=A662761821&rfr_iscdi=true |