Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect

The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi 3+ ) could effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2021-06, Vol.413 (14), p.3655-3665
Hauptverfasser: Zhang, Kehui, Zhou, Xibin, Xue, Xin, Luo, Mingyue, Liu, Xiuhui, Xue, Zhonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3665
container_issue 14
container_start_page 3655
container_title Analytical and bioanalytical chemistry
container_volume 413
creator Zhang, Kehui
Zhou, Xibin
Xue, Xin
Luo, Mingyue
Liu, Xiuhui
Xue, Zhonghua
description The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi 3+ ) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi 3+  ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi 3+ ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi 3+ ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi 3+ ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.
doi_str_mv 10.1007/s00216-021-03312-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2530776103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662761821</galeid><sourcerecordid>A662761821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</originalsourceid><addsrcrecordid>eNp9UU1rFTEUHcRia_UPuJCA66n5mGQmy1LUFgp2YdfhTuZmXsqbpCYZ5HXtDzf11SeClMDN5eacQ-45TfOO0TNGaf8xU8qZamtpqRCMt_pFc8IUG1quJH156Dt-3LzO-Y5SJgemXjXHQgxc816dND9vNrHEssG0xAVL8pZAgO0u-0yiI6PPy1o2xMeQyZp9mAnMc8IZSh21PkyrxYkECPFhtyDJu1xwIT985QApkGYsbVWdZ0wVl9fkwCKxW4TwKIbOoS1vmiMH24xvn-7T5vbzp28Xl-311y9XF-fXre16XVo5OgpdT3mnJQxKS-3ESCXC6Do5jHTgChwC9t1kJUc56FGDADvSCSRTSpw2H_a69yl-XzEXcxfXVNfNhktB-16xauQBNcMWjQ8ulgR28dmac6Wqa2zgrKLO_oOqZ8LF2xjQ-Tr_h8D3BJtizgmduU9-gbQzjJrHPM0-T1OL-Z2n0ZX0_unH67jgdKD8CbACxB6Q61OoLv9d6RnZXwzmrNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530776103</pqid></control><display><type>article</type><title>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Kehui ; Zhou, Xibin ; Xue, Xin ; Luo, Mingyue ; Liu, Xiuhui ; Xue, Zhonghua</creator><creatorcontrib>Zhang, Kehui ; Zhou, Xibin ; Xue, Xin ; Luo, Mingyue ; Liu, Xiuhui ; Xue, Zhonghua</creatorcontrib><description>The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi 3+ ) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi 3+  ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi 3+ ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi 3+ ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi 3+ ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03312-9</identifier><identifier>PMID: 33829276</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agglomeration ; Analytical Chemistry ; Biochemistry ; Bismuth ; Catalytic activity ; Cetyltrimethylammonium bromide ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Citric acid ; Cleaning ; Electrostatic properties ; Food Science ; Gold ; Heavy metals ; Ions ; Laboratory Medicine ; Ligands ; Medical tests ; Metal ions ; Methods ; Monitoring/Environmental Analysis ; Nanoparticles ; Optical properties ; Oxidation ; Peroxidase ; Physiological aspects ; Research Paper ; Substrates ; Thermal properties</subject><ispartof>Analytical and bioanalytical chemistry, 2021-06, Vol.413 (14), p.3655-3665</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</citedby><cites>FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03312-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03312-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33829276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kehui</creatorcontrib><creatorcontrib>Zhou, Xibin</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Luo, Mingyue</creatorcontrib><creatorcontrib>Liu, Xiuhui</creatorcontrib><creatorcontrib>Xue, Zhonghua</creatorcontrib><title>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi 3+ ) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi 3+  ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi 3+ ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi 3+ ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi 3+ ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.</description><subject>Agglomeration</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Bismuth</subject><subject>Catalytic activity</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Citric acid</subject><subject>Cleaning</subject><subject>Electrostatic properties</subject><subject>Food Science</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Ions</subject><subject>Laboratory Medicine</subject><subject>Ligands</subject><subject>Medical tests</subject><subject>Metal ions</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Peroxidase</subject><subject>Physiological aspects</subject><subject>Research Paper</subject><subject>Substrates</subject><subject>Thermal properties</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1rFTEUHcRia_UPuJCA66n5mGQmy1LUFgp2YdfhTuZmXsqbpCYZ5HXtDzf11SeClMDN5eacQ-45TfOO0TNGaf8xU8qZamtpqRCMt_pFc8IUG1quJH156Dt-3LzO-Y5SJgemXjXHQgxc816dND9vNrHEssG0xAVL8pZAgO0u-0yiI6PPy1o2xMeQyZp9mAnMc8IZSh21PkyrxYkECPFhtyDJu1xwIT985QApkGYsbVWdZ0wVl9fkwCKxW4TwKIbOoS1vmiMH24xvn-7T5vbzp28Xl-311y9XF-fXre16XVo5OgpdT3mnJQxKS-3ESCXC6Do5jHTgChwC9t1kJUc56FGDADvSCSRTSpw2H_a69yl-XzEXcxfXVNfNhktB-16xauQBNcMWjQ8ulgR28dmac6Wqa2zgrKLO_oOqZ8LF2xjQ-Tr_h8D3BJtizgmduU9-gbQzjJrHPM0-T1OL-Z2n0ZX0_unH67jgdKD8CbACxB6Q61OoLv9d6RnZXwzmrNw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kehui</creator><creator>Zhou, Xibin</creator><creator>Xue, Xin</creator><creator>Luo, Mingyue</creator><creator>Liu, Xiuhui</creator><creator>Xue, Zhonghua</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</title><author>Zhang, Kehui ; Zhou, Xibin ; Xue, Xin ; Luo, Mingyue ; Liu, Xiuhui ; Xue, Zhonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-5bf0a4702495a86959f3b05eabf458b0826afeae74dc52e589b9a3acb0da51663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Bismuth</topic><topic>Catalytic activity</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Citric acid</topic><topic>Cleaning</topic><topic>Electrostatic properties</topic><topic>Food Science</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Ions</topic><topic>Laboratory Medicine</topic><topic>Ligands</topic><topic>Medical tests</topic><topic>Metal ions</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Peroxidase</topic><topic>Physiological aspects</topic><topic>Research Paper</topic><topic>Substrates</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kehui</creatorcontrib><creatorcontrib>Zhou, Xibin</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Luo, Mingyue</creatorcontrib><creatorcontrib>Liu, Xiuhui</creatorcontrib><creatorcontrib>Xue, Zhonghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kehui</au><au>Zhou, Xibin</au><au>Xue, Xin</au><au>Luo, Mingyue</au><au>Liu, Xiuhui</au><au>Xue, Zhonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>413</volume><issue>14</issue><spage>3655</spage><epage>3665</epage><pages>3655-3665</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi 3+ ) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi 3+  ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi 3+ ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi 3+ ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi 3+ ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33829276</pmid><doi>10.1007/s00216-021-03312-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2021-06, Vol.413 (14), p.3655-3665
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_journals_2530776103
source Springer Nature - Complete Springer Journals
subjects Agglomeration
Analytical Chemistry
Biochemistry
Bismuth
Catalytic activity
Cetyltrimethylammonium bromide
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Citric acid
Cleaning
Electrostatic properties
Food Science
Gold
Heavy metals
Ions
Laboratory Medicine
Ligands
Medical tests
Metal ions
Methods
Monitoring/Environmental Analysis
Nanoparticles
Optical properties
Oxidation
Peroxidase
Physiological aspects
Research Paper
Substrates
Thermal properties
title Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photothermometric%20analysis%20of%20bismuth%20ions%20using%20aggregation-induced%20nanozyme%20system%20with%20a%20target-triggered%20surface%20cleaning%20effect&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Zhang,%20Kehui&rft.date=2021-06-01&rft.volume=413&rft.issue=14&rft.spage=3655&rft.epage=3665&rft.pages=3655-3665&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03312-9&rft_dat=%3Cgale_proqu%3EA662761821%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530776103&rft_id=info:pmid/33829276&rft_galeid=A662761821&rfr_iscdi=true