Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China

Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-05, Vol.13 (9), p.4830, Article 4830
Hauptverfasser: Huangfu, Wenchao, Wu, Weicheng, Zhou, Xiaoting, Lin, Ziyu, Zhang, Guiliang, Chen, Renxiang, Song, Yong, Lang, Tao, Qin, Yaozu, Ou, Penghui, Zhang, Yang, Xie, Lifeng, Huang, Xiaolan, Fu, Xiao, Li, Jie, Jiang, Jingheng, Zhang, Ming, Liu, Yixuan, Peng, Shanling, Shao, Chongjian, Bai, Yonghui, Zhang, Xiaofeng, Liu, Xiangtong, Liu, Wenheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 4830
container_title Sustainability
container_volume 13
creator Huangfu, Wenchao
Wu, Weicheng
Zhou, Xiaoting
Lin, Ziyu
Zhang, Guiliang
Chen, Renxiang
Song, Yong
Lang, Tao
Qin, Yaozu
Ou, Penghui
Zhang, Yang
Xie, Lifeng
Huang, Xiaolan
Fu, Xiao
Li, Jie
Jiang, Jingheng
Zhang, Ming
Liu, Yixuan
Peng, Shanling
Shao, Chongjian
Bai, Yonghui
Zhang, Xiaofeng
Liu, Xiangtong
Liu, Wenheng
description Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.
doi_str_mv 10.3390/su13094830
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2530176217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530176217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-120f0dfdd22681e5657da5b0864464961163f32c698950dc0551e432518875be3</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYsouKx78RMEvKnVSdKk6VGK7ipdhMU9Ssk2ac26JmvS4p9Pb8uKenQOMw_mvRn4RdExhgtKM7gMHaaQJYLCXjQikOIYA4P9P_owmoSwhr4oxRnmo-ixkFaFjVEaTbWLZ_JTeoUWJjyjudxujW3QMgy9cI0JranQQjdeh2CcRXOn9GZYGoumnXk35-jOSNsMIn8yVh5FB7XcBD35nuNoeXP9kM_i4n56m18VcUUy1saYQA2qVooQLrBmnKVKshUIniQ8yTjGnNaUVDwTGQNVAWNYJ5QwLETKVpqOo5Pd3a13r50Obbl2nbf9y5IwCjjlBKe963TnqrwLweu63HrzIv1HiaEcCJa_BHuz2Jnf9MrVoTLaVvon0BPkDDIQYoCJc9PKtieSu862ffTs_1H6BR9vgPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530176217</pqid></control><display><type>article</type><title>Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Huangfu, Wenchao ; Wu, Weicheng ; Zhou, Xiaoting ; Lin, Ziyu ; Zhang, Guiliang ; Chen, Renxiang ; Song, Yong ; Lang, Tao ; Qin, Yaozu ; Ou, Penghui ; Zhang, Yang ; Xie, Lifeng ; Huang, Xiaolan ; Fu, Xiao ; Li, Jie ; Jiang, Jingheng ; Zhang, Ming ; Liu, Yixuan ; Peng, Shanling ; Shao, Chongjian ; Bai, Yonghui ; Zhang, Xiaofeng ; Liu, Xiangtong ; Liu, Wenheng</creator><creatorcontrib>Huangfu, Wenchao ; Wu, Weicheng ; Zhou, Xiaoting ; Lin, Ziyu ; Zhang, Guiliang ; Chen, Renxiang ; Song, Yong ; Lang, Tao ; Qin, Yaozu ; Ou, Penghui ; Zhang, Yang ; Xie, Lifeng ; Huang, Xiaolan ; Fu, Xiao ; Li, Jie ; Jiang, Jingheng ; Zhang, Ming ; Liu, Yixuan ; Peng, Shanling ; Shao, Chongjian ; Bai, Yonghui ; Zhang, Xiaofeng ; Liu, Xiangtong ; Liu, Wenheng</creatorcontrib><description>Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13094830</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject><![CDATA[Algorithms ; Artificial intelligence ; Datasets ; Earth science ; Emergency preparedness ; Environmental factors ; Environmental risk ; Environmental Sciences ; Environmental Sciences & Ecology ; Environmental Studies ; Geology ; Green & Sustainable Science & Technology ; Landslides ; Landslides & mudslides ; Life Sciences & Biomedicine ; Machine learning ; Model accuracy ; Modelling ; Neural networks ; Polygons ; Precipitation ; Prevention ; Risk assessment ; Risk management ; Risk reduction ; Science & Technology ; Science & Technology - Other Topics ; Statistical analysis ; Technical services ; Vegetation ; Zoning]]></subject><ispartof>Sustainability, 2021-05, Vol.13 (9), p.4830, Article 4830</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000650908800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c295t-120f0dfdd22681e5657da5b0864464961163f32c698950dc0551e432518875be3</citedby><cites>FETCH-LOGICAL-c295t-120f0dfdd22681e5657da5b0864464961163f32c698950dc0551e432518875be3</cites><orcidid>0000-0001-6362-9840 ; 0000-0003-0662-8045 ; 0000-0003-3056-3069 ; 0000-0003-1998-2916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929,39261,39262</link.rule.ids></links><search><creatorcontrib>Huangfu, Wenchao</creatorcontrib><creatorcontrib>Wu, Weicheng</creatorcontrib><creatorcontrib>Zhou, Xiaoting</creatorcontrib><creatorcontrib>Lin, Ziyu</creatorcontrib><creatorcontrib>Zhang, Guiliang</creatorcontrib><creatorcontrib>Chen, Renxiang</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Lang, Tao</creatorcontrib><creatorcontrib>Qin, Yaozu</creatorcontrib><creatorcontrib>Ou, Penghui</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Xie, Lifeng</creatorcontrib><creatorcontrib>Huang, Xiaolan</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Jiang, Jingheng</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Liu, Yixuan</creatorcontrib><creatorcontrib>Peng, Shanling</creatorcontrib><creatorcontrib>Shao, Chongjian</creatorcontrib><creatorcontrib>Bai, Yonghui</creatorcontrib><creatorcontrib>Zhang, Xiaofeng</creatorcontrib><creatorcontrib>Liu, Xiangtong</creatorcontrib><creatorcontrib>Liu, Wenheng</creatorcontrib><title>Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China</title><title>Sustainability</title><addtitle>SUSTAINABILITY-BASEL</addtitle><description>Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Datasets</subject><subject>Earth science</subject><subject>Emergency preparedness</subject><subject>Environmental factors</subject><subject>Environmental risk</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Environmental Studies</subject><subject>Geology</subject><subject>Green &amp; Sustainable Science &amp; Technology</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Polygons</subject><subject>Precipitation</subject><subject>Prevention</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Statistical analysis</subject><subject>Technical services</subject><subject>Vegetation</subject><subject>Zoning</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE9LxDAQxYsouKx78RMEvKnVSdKk6VGK7ipdhMU9Ssk2ac26JmvS4p9Pb8uKenQOMw_mvRn4RdExhgtKM7gMHaaQJYLCXjQikOIYA4P9P_owmoSwhr4oxRnmo-ixkFaFjVEaTbWLZ_JTeoUWJjyjudxujW3QMgy9cI0JranQQjdeh2CcRXOn9GZYGoumnXk35-jOSNsMIn8yVh5FB7XcBD35nuNoeXP9kM_i4n56m18VcUUy1saYQA2qVooQLrBmnKVKshUIniQ8yTjGnNaUVDwTGQNVAWNYJ5QwLETKVpqOo5Pd3a13r50Obbl2nbf9y5IwCjjlBKe963TnqrwLweu63HrzIv1HiaEcCJa_BHuz2Jnf9MrVoTLaVvon0BPkDDIQYoCJc9PKtieSu862ffTs_1H6BR9vgPw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Huangfu, Wenchao</creator><creator>Wu, Weicheng</creator><creator>Zhou, Xiaoting</creator><creator>Lin, Ziyu</creator><creator>Zhang, Guiliang</creator><creator>Chen, Renxiang</creator><creator>Song, Yong</creator><creator>Lang, Tao</creator><creator>Qin, Yaozu</creator><creator>Ou, Penghui</creator><creator>Zhang, Yang</creator><creator>Xie, Lifeng</creator><creator>Huang, Xiaolan</creator><creator>Fu, Xiao</creator><creator>Li, Jie</creator><creator>Jiang, Jingheng</creator><creator>Zhang, Ming</creator><creator>Liu, Yixuan</creator><creator>Peng, Shanling</creator><creator>Shao, Chongjian</creator><creator>Bai, Yonghui</creator><creator>Zhang, Xiaofeng</creator><creator>Liu, Xiangtong</creator><creator>Liu, Wenheng</creator><general>Mdpi</general><general>MDPI AG</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6362-9840</orcidid><orcidid>https://orcid.org/0000-0003-0662-8045</orcidid><orcidid>https://orcid.org/0000-0003-3056-3069</orcidid><orcidid>https://orcid.org/0000-0003-1998-2916</orcidid></search><sort><creationdate>20210501</creationdate><title>Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China</title><author>Huangfu, Wenchao ; Wu, Weicheng ; Zhou, Xiaoting ; Lin, Ziyu ; Zhang, Guiliang ; Chen, Renxiang ; Song, Yong ; Lang, Tao ; Qin, Yaozu ; Ou, Penghui ; Zhang, Yang ; Xie, Lifeng ; Huang, Xiaolan ; Fu, Xiao ; Li, Jie ; Jiang, Jingheng ; Zhang, Ming ; Liu, Yixuan ; Peng, Shanling ; Shao, Chongjian ; Bai, Yonghui ; Zhang, Xiaofeng ; Liu, Xiangtong ; Liu, Wenheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-120f0dfdd22681e5657da5b0864464961163f32c698950dc0551e432518875be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Datasets</topic><topic>Earth science</topic><topic>Emergency preparedness</topic><topic>Environmental factors</topic><topic>Environmental risk</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Environmental Studies</topic><topic>Geology</topic><topic>Green &amp; Sustainable Science &amp; Technology</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Polygons</topic><topic>Precipitation</topic><topic>Prevention</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Statistical analysis</topic><topic>Technical services</topic><topic>Vegetation</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huangfu, Wenchao</creatorcontrib><creatorcontrib>Wu, Weicheng</creatorcontrib><creatorcontrib>Zhou, Xiaoting</creatorcontrib><creatorcontrib>Lin, Ziyu</creatorcontrib><creatorcontrib>Zhang, Guiliang</creatorcontrib><creatorcontrib>Chen, Renxiang</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Lang, Tao</creatorcontrib><creatorcontrib>Qin, Yaozu</creatorcontrib><creatorcontrib>Ou, Penghui</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Xie, Lifeng</creatorcontrib><creatorcontrib>Huang, Xiaolan</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Jiang, Jingheng</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Liu, Yixuan</creatorcontrib><creatorcontrib>Peng, Shanling</creatorcontrib><creatorcontrib>Shao, Chongjian</creatorcontrib><creatorcontrib>Bai, Yonghui</creatorcontrib><creatorcontrib>Zhang, Xiaofeng</creatorcontrib><creatorcontrib>Liu, Xiangtong</creatorcontrib><creatorcontrib>Liu, Wenheng</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huangfu, Wenchao</au><au>Wu, Weicheng</au><au>Zhou, Xiaoting</au><au>Lin, Ziyu</au><au>Zhang, Guiliang</au><au>Chen, Renxiang</au><au>Song, Yong</au><au>Lang, Tao</au><au>Qin, Yaozu</au><au>Ou, Penghui</au><au>Zhang, Yang</au><au>Xie, Lifeng</au><au>Huang, Xiaolan</au><au>Fu, Xiao</au><au>Li, Jie</au><au>Jiang, Jingheng</au><au>Zhang, Ming</au><au>Liu, Yixuan</au><au>Peng, Shanling</au><au>Shao, Chongjian</au><au>Bai, Yonghui</au><au>Zhang, Xiaofeng</au><au>Liu, Xiangtong</au><au>Liu, Wenheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China</atitle><jtitle>Sustainability</jtitle><stitle>SUSTAINABILITY-BASEL</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>4830</spage><pages>4830-</pages><artnum>4830</artnum><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/su13094830</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6362-9840</orcidid><orcidid>https://orcid.org/0000-0003-0662-8045</orcidid><orcidid>https://orcid.org/0000-0003-3056-3069</orcidid><orcidid>https://orcid.org/0000-0003-1998-2916</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-05, Vol.13 (9), p.4830, Article 4830
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2530176217
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Artificial intelligence
Datasets
Earth science
Emergency preparedness
Environmental factors
Environmental risk
Environmental Sciences
Environmental Sciences & Ecology
Environmental Studies
Geology
Green & Sustainable Science & Technology
Landslides
Landslides & mudslides
Life Sciences & Biomedicine
Machine learning
Model accuracy
Modelling
Neural networks
Polygons
Precipitation
Prevention
Risk assessment
Risk management
Risk reduction
Science & Technology
Science & Technology - Other Topics
Statistical analysis
Technical services
Vegetation
Zoning
title Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20Geo-Hazard%20Risk%20Mapping%20Using%20Logistic%20Regression%20Modeling%20in%20Guixi,%20Jiangxi,%20China&rft.jtitle=Sustainability&rft.au=Huangfu,%20Wenchao&rft.date=2021-05-01&rft.volume=13&rft.issue=9&rft.spage=4830&rft.pages=4830-&rft.artnum=4830&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13094830&rft_dat=%3Cproquest_webof%3E2530176217%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530176217&rft_id=info:pmid/&rfr_iscdi=true