Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT

The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-05, Vol.13 (9), p.1239
Hauptverfasser: Rabezanahary Tanteliniaina, Mirindra Finaritra, Rahaman, Md. Hasibur, Zhai, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1239
container_title Water (Basel)
container_volume 13
creator Rabezanahary Tanteliniaina, Mirindra Finaritra
Rahaman, Md. Hasibur
Zhai, Jun
description The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 > 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.
doi_str_mv 10.3390/w13091239
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2530130122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791329255</galeid><sourcerecordid>A791329255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cda94f33be9ea996bccfec24545b2b654e41b957fd7db23a1522a7846a4930a03</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuTgP9jEk4ngflL22BAREsREIR6b7XZaim0Xd1tM_70rqHHmMF_vzSRvguCa4BFjEt9_EoYloUyeBT2KQzbknJPzf_llMHBuh71xOZkI3AsOkXPgXAV1g0yGmi2gWdu0FtCi2it9bE7LolINoOlW1TkgUx9h8y61pjR598t78lPz3qGX4gD2zpepypXTyqKNK-ocRasVUnWKXt-i9VVwkanSweAn9oPN7GE9nQ-Xz4-LabQcasZIM9SpkjxjLAEJSspxonUGmnLBRUKTseDASSJFmKVhmlCmiKBUhRM-VlwyrDDrBzenvXtrPlpwTbwzra39yZgKhr1ehFKPGp1QuSohLurMNFZp7ylUhTY1ZIXvR6EkjEoqhCfcngjaGucsZPHeeo1sFxMcf78i_nsF-wJ_3Xli</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530130122</pqid></control><display><type>article</type><title>Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Rabezanahary Tanteliniaina, Mirindra Finaritra ; Rahaman, Md. Hasibur ; Zhai, Jun</creator><creatorcontrib>Rabezanahary Tanteliniaina, Mirindra Finaritra ; Rahaman, Md. Hasibur ; Zhai, Jun</creatorcontrib><description>The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 &gt; 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w13091239</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Annual precipitation ; Annual runoff ; Aquatic resources ; Book publishing ; Climate change ; Climate prediction ; Climatic changes ; General circulation models ; Geospatial data ; Global climate models ; Hydrologic models ; Hydrology ; Madagascar ; Management ; Neural networks ; Performance evaluation ; Precipitation ; Regions ; Rivers ; Socioeconomic factors ; Soil water ; Stream flow ; Streamflow ; Temperature ; United Kingdom ; Water ; Water engineering ; Water management ; Water resources ; Water resources management</subject><ispartof>Water (Basel), 2021-05, Vol.13 (9), p.1239</ispartof><rights>COPYRIGHT 2021 MDPI AG</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-cda94f33be9ea996bccfec24545b2b654e41b957fd7db23a1522a7846a4930a03</citedby><cites>FETCH-LOGICAL-c331t-cda94f33be9ea996bccfec24545b2b654e41b957fd7db23a1522a7846a4930a03</cites><orcidid>0000-0003-1324-0778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Rabezanahary Tanteliniaina, Mirindra Finaritra</creatorcontrib><creatorcontrib>Rahaman, Md. Hasibur</creatorcontrib><creatorcontrib>Zhai, Jun</creatorcontrib><title>Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT</title><title>Water (Basel)</title><description>The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 &gt; 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.</description><subject>Analysis</subject><subject>Annual precipitation</subject><subject>Annual runoff</subject><subject>Aquatic resources</subject><subject>Book publishing</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Climatic changes</subject><subject>General circulation models</subject><subject>Geospatial data</subject><subject>Global climate models</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Madagascar</subject><subject>Management</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Precipitation</subject><subject>Regions</subject><subject>Rivers</subject><subject>Socioeconomic factors</subject><subject>Soil water</subject><subject>Stream flow</subject><subject>Streamflow</subject><subject>Temperature</subject><subject>United Kingdom</subject><subject>Water</subject><subject>Water engineering</subject><subject>Water management</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1PwkAQbYwmEuTgP9jEk4ngflL22BAREsREIR6b7XZaim0Xd1tM_70rqHHmMF_vzSRvguCa4BFjEt9_EoYloUyeBT2KQzbknJPzf_llMHBuh71xOZkI3AsOkXPgXAV1g0yGmi2gWdu0FtCi2it9bE7LolINoOlW1TkgUx9h8y61pjR598t78lPz3qGX4gD2zpepypXTyqKNK-ocRasVUnWKXt-i9VVwkanSweAn9oPN7GE9nQ-Xz4-LabQcasZIM9SpkjxjLAEJSspxonUGmnLBRUKTseDASSJFmKVhmlCmiKBUhRM-VlwyrDDrBzenvXtrPlpwTbwzra39yZgKhr1ehFKPGp1QuSohLurMNFZp7ylUhTY1ZIXvR6EkjEoqhCfcngjaGucsZPHeeo1sFxMcf78i_nsF-wJ_3Xli</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rabezanahary Tanteliniaina, Mirindra Finaritra</creator><creator>Rahaman, Md. Hasibur</creator><creator>Zhai, Jun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1324-0778</orcidid></search><sort><creationdate>20210501</creationdate><title>Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT</title><author>Rabezanahary Tanteliniaina, Mirindra Finaritra ; Rahaman, Md. Hasibur ; Zhai, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cda94f33be9ea996bccfec24545b2b654e41b957fd7db23a1522a7846a4930a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Annual precipitation</topic><topic>Annual runoff</topic><topic>Aquatic resources</topic><topic>Book publishing</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Climatic changes</topic><topic>General circulation models</topic><topic>Geospatial data</topic><topic>Global climate models</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Madagascar</topic><topic>Management</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Precipitation</topic><topic>Regions</topic><topic>Rivers</topic><topic>Socioeconomic factors</topic><topic>Soil water</topic><topic>Stream flow</topic><topic>Streamflow</topic><topic>Temperature</topic><topic>United Kingdom</topic><topic>Water</topic><topic>Water engineering</topic><topic>Water management</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabezanahary Tanteliniaina, Mirindra Finaritra</creatorcontrib><creatorcontrib>Rahaman, Md. Hasibur</creatorcontrib><creatorcontrib>Zhai, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabezanahary Tanteliniaina, Mirindra Finaritra</au><au>Rahaman, Md. Hasibur</au><au>Zhai, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT</atitle><jtitle>Water (Basel)</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>1239</spage><pages>1239-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 &gt; 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w13091239</doi><orcidid>https://orcid.org/0000-0003-1324-0778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2021-05, Vol.13 (9), p.1239
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2530130122
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Analysis
Annual precipitation
Annual runoff
Aquatic resources
Book publishing
Climate change
Climate prediction
Climatic changes
General circulation models
Geospatial data
Global climate models
Hydrologic models
Hydrology
Madagascar
Management
Neural networks
Performance evaluation
Precipitation
Regions
Rivers
Socioeconomic factors
Soil water
Stream flow
Streamflow
Temperature
United Kingdom
Water
Water engineering
Water management
Water resources
Water resources management
title Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20Future%20Impact%20of%20Climate%20Change%20on%20the%20Hydrology%20of%20the%20Mangoky%20River,%20Madagascar%20Using%20ANN%20and%20SWAT&rft.jtitle=Water%20(Basel)&rft.au=Rabezanahary%20Tanteliniaina,%20Mirindra%20Finaritra&rft.date=2021-05-01&rft.volume=13&rft.issue=9&rft.spage=1239&rft.pages=1239-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w13091239&rft_dat=%3Cgale_proqu%3EA791329255%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530130122&rft_id=info:pmid/&rft_galeid=A791329255&rfr_iscdi=true