Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size

Although SnO 2 nanofibers (NFs) are one of the good candidates as active materials for next-generation consumable electronics, these NFs based devices still suffer from insufficient on-off current ratios, large and negative threshold voltages ( \text{V}_{\mathbf {TH}} ), leading to high energy consu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2021-06, Vol.42 (6), p.855-858
Hauptverfasser: Zu, Hongliang, Chang, Yu, Li, Hao, He, Junyu, Li, Jiayi, Zhu, Xinxu, Zhang, Jun, Wang, Fengyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 6
container_start_page 855
container_title IEEE electron device letters
container_volume 42
creator Zu, Hongliang
Chang, Yu
Li, Hao
He, Junyu
Li, Jiayi
Zhu, Xinxu
Zhang, Jun
Wang, Fengyun
description Although SnO 2 nanofibers (NFs) are one of the good candidates as active materials for next-generation consumable electronics, these NFs based devices still suffer from insufficient on-off current ratios, large and negative threshold voltages ( \text{V}_{\mathbf {TH}} ), leading to high energy consumption and rather complicated circuit design. Here, SnO 2 NFs field-effect transistors (FET) were fabricated by an electrospinning technique. The device performance can be precisely manipulated by controlling the crystal grain size in the NFs. This is done by simply adjusting the annealing holding time to achieve high-performance enhancement mode. For the optimal annealing holding time of 60 min, the grain size of NFs is about 11 nm, and the devices exhibit the best electrical performance, including a small and positive V TH (≈ 2.2 V), a large switching current ratio (I ON /I OFF ≥ 10 6 ), and proper carrier mobility ( \mu _{\text{FE}} ) (≈ 2.3 cm 2 V −1 s −1 ). Moreover, this approach is universal and can be applied to optimize other metal oxide semiconductors such as ZnO NFs. This simple and facile method indicates that adjusting annealing holding time is a potential way to control the grain size to achieve low voltage operation and enhancement mode 1D metal oxide FETs.
doi_str_mv 10.1109/LED.2021.3073211
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2530116029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9404206</ieee_id><sourcerecordid>2530116029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ff4ffc359aa6c7257bd3d10735f6f4d0d39a6d42ba01bd8a1df6ae8fcfc519a3</originalsourceid><addsrcrecordid>eNqNkE1v1DAQQCMEEkvhjsTFEkeUZcZfiY8olIK0_ZC698iJ7eIq2IvtVSm_HlcpcO3Jc3hvRn5N8xZhiwjq4-7085YCxS2DjlHEZ80GhehbEJI9bzbQcWwZgnzZvMr5FgA57_imuTmP5rjo4sMNKd8t2Scd8iGmQq5SPNhUvM0kOnJui17I5S9vLLnQITo_2ZRX3OcS6zzdkyGGkuKy_N12lrQP5Nr_tq-bF04v2b55fE-a_ZfT_fC13V2efRs-7dqZKiytc9y5mQmltZw7KrrJMIP1R8JJxw0YprQ0nE4acDK9RuOktr2b3SxQaXbSvF_XHlL8ebS5jLfxmEK9OFLBAFECVZWClZpTzDlZNx6S_6HT_YgwPtQca83xoeb4WLMq_arc2Sm6PHsbZvtPAwApaKd4XydUgy-1aAxDPIZS1Q9PVyv9bqW9tf8pxYFTkOwPaQeTEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530116029</pqid></control><display><type>article</type><title>Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size</title><source>IEEE Electronic Library (IEL)</source><creator>Zu, Hongliang ; Chang, Yu ; Li, Hao ; He, Junyu ; Li, Jiayi ; Zhu, Xinxu ; Zhang, Jun ; Wang, Fengyun</creator><creatorcontrib>Zu, Hongliang ; Chang, Yu ; Li, Hao ; He, Junyu ; Li, Jiayi ; Zhu, Xinxu ; Zhang, Jun ; Wang, Fengyun</creatorcontrib><description><![CDATA[Although SnO 2 nanofibers (NFs) are one of the good candidates as active materials for next-generation consumable electronics, these NFs based devices still suffer from insufficient on-off current ratios, large and negative threshold voltages (<inline-formula> <tex-math notation="LaTeX">\text{V}_{\mathbf {TH}} </tex-math></inline-formula>), leading to high energy consumption and rather complicated circuit design. Here, SnO 2 NFs field-effect transistors (FET) were fabricated by an electrospinning technique. The device performance can be precisely manipulated by controlling the crystal grain size in the NFs. This is done by simply adjusting the annealing holding time to achieve high-performance enhancement mode. For the optimal annealing holding time of 60 min, the grain size of NFs is about 11 nm, and the devices exhibit the best electrical performance, including a small and positive V TH (≈ 2.2 V), a large switching current ratio (I ON /I OFF ≥ 10 6 ), and proper carrier mobility (<inline-formula> <tex-math notation="LaTeX">\mu _{\text{FE}} </tex-math></inline-formula>) (≈ 2.3 cm 2 V −1 s −1 ). Moreover, this approach is universal and can be applied to optimize other metal oxide semiconductors such as ZnO NFs. This simple and facile method indicates that adjusting annealing holding time is a potential way to control the grain size to achieve low voltage operation and enhancement mode 1D metal oxide FETs.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2021.3073211</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Annealing ; annealing holding time ; Carrier mobility ; Circuit design ; Energy consumption ; Engineering ; Engineering, Electrical &amp; Electronic ; Field effect transistors ; Grain boundaries ; Grain size ; Iron ; Logic gates ; Low voltage ; Metal oxide semiconductors ; Metal oxides ; Nanofibers ; NFs FET ; Optimization ; Performance enhancement ; Performance evaluation ; Science &amp; Technology ; Semiconductor devices ; Technology ; Threshold voltage ; Tin dioxide ; Transistors ; Transport properties ; Zinc oxide</subject><ispartof>IEEE electron device letters, 2021-06, Vol.42 (6), p.855-858</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652794800019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-ff4ffc359aa6c7257bd3d10735f6f4d0d39a6d42ba01bd8a1df6ae8fcfc519a3</citedby><cites>FETCH-LOGICAL-c291t-ff4ffc359aa6c7257bd3d10735f6f4d0d39a6d42ba01bd8a1df6ae8fcfc519a3</cites><orcidid>0000-0002-5558-423X ; 0000-0003-3607-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9404206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9404206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zu, Hongliang</creatorcontrib><creatorcontrib>Chang, Yu</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>He, Junyu</creatorcontrib><creatorcontrib>Li, Jiayi</creatorcontrib><creatorcontrib>Zhu, Xinxu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Fengyun</creatorcontrib><title>Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><addtitle>IEEE ELECTR DEVICE L</addtitle><description><![CDATA[Although SnO 2 nanofibers (NFs) are one of the good candidates as active materials for next-generation consumable electronics, these NFs based devices still suffer from insufficient on-off current ratios, large and negative threshold voltages (<inline-formula> <tex-math notation="LaTeX">\text{V}_{\mathbf {TH}} </tex-math></inline-formula>), leading to high energy consumption and rather complicated circuit design. Here, SnO 2 NFs field-effect transistors (FET) were fabricated by an electrospinning technique. The device performance can be precisely manipulated by controlling the crystal grain size in the NFs. This is done by simply adjusting the annealing holding time to achieve high-performance enhancement mode. For the optimal annealing holding time of 60 min, the grain size of NFs is about 11 nm, and the devices exhibit the best electrical performance, including a small and positive V TH (≈ 2.2 V), a large switching current ratio (I ON /I OFF ≥ 10 6 ), and proper carrier mobility (<inline-formula> <tex-math notation="LaTeX">\mu _{\text{FE}} </tex-math></inline-formula>) (≈ 2.3 cm 2 V −1 s −1 ). Moreover, this approach is universal and can be applied to optimize other metal oxide semiconductors such as ZnO NFs. This simple and facile method indicates that adjusting annealing holding time is a potential way to control the grain size to achieve low voltage operation and enhancement mode 1D metal oxide FETs.]]></description><subject>Annealing</subject><subject>annealing holding time</subject><subject>Carrier mobility</subject><subject>Circuit design</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Field effect transistors</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Iron</subject><subject>Logic gates</subject><subject>Low voltage</subject><subject>Metal oxide semiconductors</subject><subject>Metal oxides</subject><subject>Nanofibers</subject><subject>NFs FET</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Science &amp; Technology</subject><subject>Semiconductor devices</subject><subject>Technology</subject><subject>Threshold voltage</subject><subject>Tin dioxide</subject><subject>Transistors</subject><subject>Transport properties</subject><subject>Zinc oxide</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkE1v1DAQQCMEEkvhjsTFEkeUZcZfiY8olIK0_ZC698iJ7eIq2IvtVSm_HlcpcO3Jc3hvRn5N8xZhiwjq4-7085YCxS2DjlHEZ80GhehbEJI9bzbQcWwZgnzZvMr5FgA57_imuTmP5rjo4sMNKd8t2Scd8iGmQq5SPNhUvM0kOnJui17I5S9vLLnQITo_2ZRX3OcS6zzdkyGGkuKy_N12lrQP5Nr_tq-bF04v2b55fE-a_ZfT_fC13V2efRs-7dqZKiytc9y5mQmltZw7KrrJMIP1R8JJxw0YprQ0nE4acDK9RuOktr2b3SxQaXbSvF_XHlL8ebS5jLfxmEK9OFLBAFECVZWClZpTzDlZNx6S_6HT_YgwPtQca83xoeb4WLMq_arc2Sm6PHsbZvtPAwApaKd4XydUgy-1aAxDPIZS1Q9PVyv9bqW9tf8pxYFTkOwPaQeTEQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zu, Hongliang</creator><creator>Chang, Yu</creator><creator>Li, Hao</creator><creator>He, Junyu</creator><creator>Li, Jiayi</creator><creator>Zhu, Xinxu</creator><creator>Zhang, Jun</creator><creator>Wang, Fengyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5558-423X</orcidid><orcidid>https://orcid.org/0000-0003-3607-213X</orcidid></search><sort><creationdate>20210601</creationdate><title>Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size</title><author>Zu, Hongliang ; Chang, Yu ; Li, Hao ; He, Junyu ; Li, Jiayi ; Zhu, Xinxu ; Zhang, Jun ; Wang, Fengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ff4ffc359aa6c7257bd3d10735f6f4d0d39a6d42ba01bd8a1df6ae8fcfc519a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>annealing holding time</topic><topic>Carrier mobility</topic><topic>Circuit design</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Field effect transistors</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Iron</topic><topic>Logic gates</topic><topic>Low voltage</topic><topic>Metal oxide semiconductors</topic><topic>Metal oxides</topic><topic>Nanofibers</topic><topic>NFs FET</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Science &amp; Technology</topic><topic>Semiconductor devices</topic><topic>Technology</topic><topic>Threshold voltage</topic><topic>Tin dioxide</topic><topic>Transistors</topic><topic>Transport properties</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Hongliang</creatorcontrib><creatorcontrib>Chang, Yu</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>He, Junyu</creatorcontrib><creatorcontrib>Li, Jiayi</creatorcontrib><creatorcontrib>Zhu, Xinxu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Fengyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zu, Hongliang</au><au>Chang, Yu</au><au>Li, Hao</au><au>He, Junyu</au><au>Li, Jiayi</au><au>Zhu, Xinxu</au><au>Zhang, Jun</au><au>Wang, Fengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><stitle>IEEE ELECTR DEVICE L</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>855</spage><epage>858</epage><pages>855-858</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Although SnO 2 nanofibers (NFs) are one of the good candidates as active materials for next-generation consumable electronics, these NFs based devices still suffer from insufficient on-off current ratios, large and negative threshold voltages (<inline-formula> <tex-math notation="LaTeX">\text{V}_{\mathbf {TH}} </tex-math></inline-formula>), leading to high energy consumption and rather complicated circuit design. Here, SnO 2 NFs field-effect transistors (FET) were fabricated by an electrospinning technique. The device performance can be precisely manipulated by controlling the crystal grain size in the NFs. This is done by simply adjusting the annealing holding time to achieve high-performance enhancement mode. For the optimal annealing holding time of 60 min, the grain size of NFs is about 11 nm, and the devices exhibit the best electrical performance, including a small and positive V TH (≈ 2.2 V), a large switching current ratio (I ON /I OFF ≥ 10 6 ), and proper carrier mobility (<inline-formula> <tex-math notation="LaTeX">\mu _{\text{FE}} </tex-math></inline-formula>) (≈ 2.3 cm 2 V −1 s −1 ). Moreover, this approach is universal and can be applied to optimize other metal oxide semiconductors such as ZnO NFs. This simple and facile method indicates that adjusting annealing holding time is a potential way to control the grain size to achieve low voltage operation and enhancement mode 1D metal oxide FETs.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/LED.2021.3073211</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5558-423X</orcidid><orcidid>https://orcid.org/0000-0003-3607-213X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2021-06, Vol.42 (6), p.855-858
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_journals_2530116029
source IEEE Electronic Library (IEL)
subjects Annealing
annealing holding time
Carrier mobility
Circuit design
Energy consumption
Engineering
Engineering, Electrical & Electronic
Field effect transistors
Grain boundaries
Grain size
Iron
Logic gates
Low voltage
Metal oxide semiconductors
Metal oxides
Nanofibers
NFs FET
Optimization
Performance enhancement
Performance evaluation
Science & Technology
Semiconductor devices
Technology
Threshold voltage
Tin dioxide
Transistors
Transport properties
Zinc oxide
title Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20the%20Transport%20Properties%20of%20Metal%20Oxide%20Nanofibers%20Transistors%20by%20Controlling%20the%20Grain%20Size&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Zu,%20Hongliang&rft.date=2021-06-01&rft.volume=42&rft.issue=6&rft.spage=855&rft.epage=858&rft.pages=855-858&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2021.3073211&rft_dat=%3Cproquest_RIE%3E2530116029%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530116029&rft_id=info:pmid/&rft_ieee_id=9404206&rfr_iscdi=true