Neurophysiological Evaluation of Haptic Feedback for Myoelectric Prostheses
Evaluations of haptic feedback in myoelectric prostheses are generally limited to task performance outcomes, which while necessary, fail to capture the mental effort of the user operating the prosthesis. Cognitive load is usually investigated with reaction time metrics and secondary task accuracy, w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2021-06, Vol.51 (3), p.253-264 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 3 |
container_start_page | 253 |
container_title | IEEE transactions on human-machine systems |
container_volume | 51 |
creator | Thomas, Neha Ung, Garrett Ayaz, Hasan Brown, Jeremy D. |
description | Evaluations of haptic feedback in myoelectric prostheses are generally limited to task performance outcomes, which while necessary, fail to capture the mental effort of the user operating the prosthesis. Cognitive load is usually investigated with reaction time metrics and secondary task accuracy, which are indirect, and may not capture the time-varying nature of mental effort. Here, we propose wearable, wireless functional near infrared spectroscopy (fNIRS) neuroimaging to provide a continuous direct assessment of operator mental effort during use of a prosthesis. Utilizing fNIRS in a two-alternative forced-choice stiffness discrimination task, we asked participants to differentiate objects using their natural hand, a (traditional) myoelectric prosthesis without sensory feedback, and a myoelectric prosthesis with haptic (vibrotactile) feedback of grip force. Results showed that discrimination accuracy and mental effort are optimal with the natural hand, followed by the prosthesis featuring haptic feedback, and then the traditional prosthesis, particularly for objects whose stiffness were difficult to differentiate. This experiment highlights the utility of haptic feedback in improving task performance and lowering cognitive load for prosthesis use, and demonstrates the potential for fNIRS to provide a robust measure of cognitive effort for other human-in-the-loop systems. |
doi_str_mv | 10.1109/THMS.2021.3066856 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2530111200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9399397</ieee_id><sourcerecordid>2530111200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7a7a9804fc3ac473651a58fa8c66c6a1a0be7b1e12ac4dc04d0b4a964553caf93</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRsNQ-gHgT8Dp1D9lN9lJKa8VWBev1MtlObGrsxt1E6Nu7pdVhYAb-fw58hFwzOmaM6rvVfPk25pSzsaBKFVKdkQFnqki5oPL8r-eaXZJRCFsao-BSymJAnp6x967d7EPtGvdRW2iS6Q80PXS12yWuSubQdrVNZojrEuxnUjmfLPcOG7Sdj8Krd6HbYMBwRS4qaAKOTnVI3mfT1WSeLl4eHif3i9RyLbo0hxx0QbPKCrBZLpRkIIsKCquUVcCAlpiXDBmP8trSbE3LDLTKpBQWKi2G5Pa4t_Xuu8fQma3r_S6eNFwKyhjjlEYXO7psfDB4rEzr6y_we8OoOWAzB2zmgM2csMWZm-NMjYj_fi10zFz8Aoa3aVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530111200</pqid></control><display><type>article</type><title>Neurophysiological Evaluation of Haptic Feedback for Myoelectric Prostheses</title><source>IEEE Electronic Library (IEL)</source><creator>Thomas, Neha ; Ung, Garrett ; Ayaz, Hasan ; Brown, Jeremy D.</creator><creatorcontrib>Thomas, Neha ; Ung, Garrett ; Ayaz, Hasan ; Brown, Jeremy D.</creatorcontrib><description>Evaluations of haptic feedback in myoelectric prostheses are generally limited to task performance outcomes, which while necessary, fail to capture the mental effort of the user operating the prosthesis. Cognitive load is usually investigated with reaction time metrics and secondary task accuracy, which are indirect, and may not capture the time-varying nature of mental effort. Here, we propose wearable, wireless functional near infrared spectroscopy (fNIRS) neuroimaging to provide a continuous direct assessment of operator mental effort during use of a prosthesis. Utilizing fNIRS in a two-alternative forced-choice stiffness discrimination task, we asked participants to differentiate objects using their natural hand, a (traditional) myoelectric prosthesis without sensory feedback, and a myoelectric prosthesis with haptic (vibrotactile) feedback of grip force. Results showed that discrimination accuracy and mental effort are optimal with the natural hand, followed by the prosthesis featuring haptic feedback, and then the traditional prosthesis, particularly for objects whose stiffness were difficult to differentiate. This experiment highlights the utility of haptic feedback in improving task performance and lowering cognitive load for prosthesis use, and demonstrates the potential for fNIRS to provide a robust measure of cognitive effort for other human-in-the-loop systems.</description><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/THMS.2021.3066856</identifier><identifier>CODEN: ITHSA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Cognitive load ; Discrimination ; Electroencephalography ; Electromyography ; Feedback ; Functional magnetic resonance imaging ; functional near-infrared spectroscopy (fNIRS) ; Grip force ; haptic feedback ; Haptic interfaces ; Infrared spectroscopy ; Medical imaging ; myoelectric prosthetics ; Myoelectricity ; Near infrared radiation ; neuroergonomics ; Object recognition ; Prostheses ; Prosthetics ; Reaction time ; Sensory feedback ; Stiffness ; Task analysis</subject><ispartof>IEEE transactions on human-machine systems, 2021-06, Vol.51 (3), p.253-264</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7a7a9804fc3ac473651a58fa8c66c6a1a0be7b1e12ac4dc04d0b4a964553caf93</citedby><cites>FETCH-LOGICAL-c293t-7a7a9804fc3ac473651a58fa8c66c6a1a0be7b1e12ac4dc04d0b4a964553caf93</cites><orcidid>0000-0003-4699-9385 ; 0000-0001-5514-2741 ; 0000-0001-5586-455X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9399397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9399397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thomas, Neha</creatorcontrib><creatorcontrib>Ung, Garrett</creatorcontrib><creatorcontrib>Ayaz, Hasan</creatorcontrib><creatorcontrib>Brown, Jeremy D.</creatorcontrib><title>Neurophysiological Evaluation of Haptic Feedback for Myoelectric Prostheses</title><title>IEEE transactions on human-machine systems</title><addtitle>THMS</addtitle><description>Evaluations of haptic feedback in myoelectric prostheses are generally limited to task performance outcomes, which while necessary, fail to capture the mental effort of the user operating the prosthesis. Cognitive load is usually investigated with reaction time metrics and secondary task accuracy, which are indirect, and may not capture the time-varying nature of mental effort. Here, we propose wearable, wireless functional near infrared spectroscopy (fNIRS) neuroimaging to provide a continuous direct assessment of operator mental effort during use of a prosthesis. Utilizing fNIRS in a two-alternative forced-choice stiffness discrimination task, we asked participants to differentiate objects using their natural hand, a (traditional) myoelectric prosthesis without sensory feedback, and a myoelectric prosthesis with haptic (vibrotactile) feedback of grip force. Results showed that discrimination accuracy and mental effort are optimal with the natural hand, followed by the prosthesis featuring haptic feedback, and then the traditional prosthesis, particularly for objects whose stiffness were difficult to differentiate. This experiment highlights the utility of haptic feedback in improving task performance and lowering cognitive load for prosthesis use, and demonstrates the potential for fNIRS to provide a robust measure of cognitive effort for other human-in-the-loop systems.</description><subject>Actuators</subject><subject>Cognitive load</subject><subject>Discrimination</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Feedback</subject><subject>Functional magnetic resonance imaging</subject><subject>functional near-infrared spectroscopy (fNIRS)</subject><subject>Grip force</subject><subject>haptic feedback</subject><subject>Haptic interfaces</subject><subject>Infrared spectroscopy</subject><subject>Medical imaging</subject><subject>myoelectric prosthetics</subject><subject>Myoelectricity</subject><subject>Near infrared radiation</subject><subject>neuroergonomics</subject><subject>Object recognition</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Reaction time</subject><subject>Sensory feedback</subject><subject>Stiffness</subject><subject>Task analysis</subject><issn>2168-2291</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AQhhdRsNQ-gHgT8Dp1D9lN9lJKa8VWBev1MtlObGrsxt1E6Nu7pdVhYAb-fw58hFwzOmaM6rvVfPk25pSzsaBKFVKdkQFnqki5oPL8r-eaXZJRCFsao-BSymJAnp6x967d7EPtGvdRW2iS6Q80PXS12yWuSubQdrVNZojrEuxnUjmfLPcOG7Sdj8Krd6HbYMBwRS4qaAKOTnVI3mfT1WSeLl4eHif3i9RyLbo0hxx0QbPKCrBZLpRkIIsKCquUVcCAlpiXDBmP8trSbE3LDLTKpBQWKi2G5Pa4t_Xuu8fQma3r_S6eNFwKyhjjlEYXO7psfDB4rEzr6y_we8OoOWAzB2zmgM2csMWZm-NMjYj_fi10zFz8Aoa3aVM</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Thomas, Neha</creator><creator>Ung, Garrett</creator><creator>Ayaz, Hasan</creator><creator>Brown, Jeremy D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4699-9385</orcidid><orcidid>https://orcid.org/0000-0001-5514-2741</orcidid><orcidid>https://orcid.org/0000-0001-5586-455X</orcidid></search><sort><creationdate>202106</creationdate><title>Neurophysiological Evaluation of Haptic Feedback for Myoelectric Prostheses</title><author>Thomas, Neha ; Ung, Garrett ; Ayaz, Hasan ; Brown, Jeremy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7a7a9804fc3ac473651a58fa8c66c6a1a0be7b1e12ac4dc04d0b4a964553caf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Cognitive load</topic><topic>Discrimination</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Feedback</topic><topic>Functional magnetic resonance imaging</topic><topic>functional near-infrared spectroscopy (fNIRS)</topic><topic>Grip force</topic><topic>haptic feedback</topic><topic>Haptic interfaces</topic><topic>Infrared spectroscopy</topic><topic>Medical imaging</topic><topic>myoelectric prosthetics</topic><topic>Myoelectricity</topic><topic>Near infrared radiation</topic><topic>neuroergonomics</topic><topic>Object recognition</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Reaction time</topic><topic>Sensory feedback</topic><topic>Stiffness</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Neha</creatorcontrib><creatorcontrib>Ung, Garrett</creatorcontrib><creatorcontrib>Ayaz, Hasan</creatorcontrib><creatorcontrib>Brown, Jeremy D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thomas, Neha</au><au>Ung, Garrett</au><au>Ayaz, Hasan</au><au>Brown, Jeremy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurophysiological Evaluation of Haptic Feedback for Myoelectric Prostheses</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>THMS</stitle><date>2021-06</date><risdate>2021</risdate><volume>51</volume><issue>3</issue><spage>253</spage><epage>264</epage><pages>253-264</pages><issn>2168-2291</issn><eissn>2168-2305</eissn><coden>ITHSA6</coden><abstract>Evaluations of haptic feedback in myoelectric prostheses are generally limited to task performance outcomes, which while necessary, fail to capture the mental effort of the user operating the prosthesis. Cognitive load is usually investigated with reaction time metrics and secondary task accuracy, which are indirect, and may not capture the time-varying nature of mental effort. Here, we propose wearable, wireless functional near infrared spectroscopy (fNIRS) neuroimaging to provide a continuous direct assessment of operator mental effort during use of a prosthesis. Utilizing fNIRS in a two-alternative forced-choice stiffness discrimination task, we asked participants to differentiate objects using their natural hand, a (traditional) myoelectric prosthesis without sensory feedback, and a myoelectric prosthesis with haptic (vibrotactile) feedback of grip force. Results showed that discrimination accuracy and mental effort are optimal with the natural hand, followed by the prosthesis featuring haptic feedback, and then the traditional prosthesis, particularly for objects whose stiffness were difficult to differentiate. This experiment highlights the utility of haptic feedback in improving task performance and lowering cognitive load for prosthesis use, and demonstrates the potential for fNIRS to provide a robust measure of cognitive effort for other human-in-the-loop systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/THMS.2021.3066856</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4699-9385</orcidid><orcidid>https://orcid.org/0000-0001-5514-2741</orcidid><orcidid>https://orcid.org/0000-0001-5586-455X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2291 |
ispartof | IEEE transactions on human-machine systems, 2021-06, Vol.51 (3), p.253-264 |
issn | 2168-2291 2168-2305 |
language | eng |
recordid | cdi_proquest_journals_2530111200 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Cognitive load Discrimination Electroencephalography Electromyography Feedback Functional magnetic resonance imaging functional near-infrared spectroscopy (fNIRS) Grip force haptic feedback Haptic interfaces Infrared spectroscopy Medical imaging myoelectric prosthetics Myoelectricity Near infrared radiation neuroergonomics Object recognition Prostheses Prosthetics Reaction time Sensory feedback Stiffness Task analysis |
title | Neurophysiological Evaluation of Haptic Feedback for Myoelectric Prostheses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurophysiological%20Evaluation%20of%20Haptic%20Feedback%20for%20Myoelectric%20Prostheses&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Thomas,%20Neha&rft.date=2021-06&rft.volume=51&rft.issue=3&rft.spage=253&rft.epage=264&rft.pages=253-264&rft.issn=2168-2291&rft.eissn=2168-2305&rft.coden=ITHSA6&rft_id=info:doi/10.1109/THMS.2021.3066856&rft_dat=%3Cproquest_RIE%3E2530111200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530111200&rft_id=info:pmid/&rft_ieee_id=9399397&rfr_iscdi=true |