Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration
Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regenera...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical robotics and bionics 2021-05, Vol.3 (2), p.455-462 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 2 |
container_start_page | 455 |
container_title | IEEE transactions on medical robotics and bionics |
container_volume | 3 |
creator | Laschowski, Brokoslaw Razavian, Reza Sharif McPhee, John |
description | Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration. |
doi_str_mv | 10.1109/TMRB.2021.3058323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2530110464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9351558</ieee_id><sourcerecordid>2530110464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</originalsourceid><addsrcrecordid>eNpNkFtLwzAYhoMoOOZ-gHgT8LozaZoeLt2YB5go28TL0KZf1sytmUkK7t-buiFe5SM873d4ELqmZEwpKe5WL4vJOCYxHTPCcxazMzSIeZZGLHye_6sv0ci5DSEB5SRj6QA1S73rtqXXpsVG4aUv2zryJlpqjyfa7EA2Zaulw8pYvDCV8Vri2bdxn7AFb1qHQwC_WeN8Aw4c_tC-wbMW7PqAF7CGUP12v0IXqtw6GJ3eIXp_mK2mT9H89fF5ej-PZFwwH3GgKVNZniRQMIAaJC-yCqqSsKJWJM9rKgmTvAKl0v6EumK5yngOac6V4myIbo9999Z8deC82JjOtmGkiDkjwVeSJoGiR0qGzZ0FJfZW70p7EJSI3qnonYreqTg5DZmbY0YDwB9fME55AH4AyGRzyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530110464</pqid></control><display><type>article</type><title>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</title><source>IEEE Electronic Library (IEL)</source><creator>Laschowski, Brokoslaw ; Razavian, Reza Sharif ; McPhee, John</creator><creatorcontrib>Laschowski, Brokoslaw ; Razavian, Reza Sharif ; McPhee, John</creatorcontrib><description>Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3058323</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Biological system modeling ; Biomechanics ; Dynamics ; efficiency ; Exoskeletons ; Force measurement ; Hip ; Inverse dynamics ; Joints (anatomy) ; Kinematics ; Knee ; Legged locomotion ; Parameter estimation ; Parameter identification ; Prostheses ; prosthetics ; Regeneration ; Rehabilitation ; Robotics ; Walking ; wearable robotics ; Young adults</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-05, Vol.3 (2), p.455-462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</citedby><cites>FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</cites><orcidid>0000-0003-2039-6447 ; 0000-0003-1190-0816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9351558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9351558$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laschowski, Brokoslaw</creatorcontrib><creatorcontrib>Razavian, Reza Sharif</creatorcontrib><creatorcontrib>McPhee, John</creatorcontrib><title>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.</description><subject>Actuators</subject><subject>Biological system modeling</subject><subject>Biomechanics</subject><subject>Dynamics</subject><subject>efficiency</subject><subject>Exoskeletons</subject><subject>Force measurement</subject><subject>Hip</subject><subject>Inverse dynamics</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Knee</subject><subject>Legged locomotion</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Prostheses</subject><subject>prosthetics</subject><subject>Regeneration</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Walking</subject><subject>wearable robotics</subject><subject>Young adults</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLwzAYhoMoOOZ-gHgT8LozaZoeLt2YB5go28TL0KZf1sytmUkK7t-buiFe5SM873d4ELqmZEwpKe5WL4vJOCYxHTPCcxazMzSIeZZGLHye_6sv0ci5DSEB5SRj6QA1S73rtqXXpsVG4aUv2zryJlpqjyfa7EA2Zaulw8pYvDCV8Vri2bdxn7AFb1qHQwC_WeN8Aw4c_tC-wbMW7PqAF7CGUP12v0IXqtw6GJ3eIXp_mK2mT9H89fF5ej-PZFwwH3GgKVNZniRQMIAaJC-yCqqSsKJWJM9rKgmTvAKl0v6EumK5yngOac6V4myIbo9999Z8deC82JjOtmGkiDkjwVeSJoGiR0qGzZ0FJfZW70p7EJSI3qnonYreqTg5DZmbY0YDwB9fME55AH4AyGRzyA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Laschowski, Brokoslaw</creator><creator>Razavian, Reza Sharif</creator><creator>McPhee, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2039-6447</orcidid><orcidid>https://orcid.org/0000-0003-1190-0816</orcidid></search><sort><creationdate>20210501</creationdate><title>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</title><author>Laschowski, Brokoslaw ; Razavian, Reza Sharif ; McPhee, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Biological system modeling</topic><topic>Biomechanics</topic><topic>Dynamics</topic><topic>efficiency</topic><topic>Exoskeletons</topic><topic>Force measurement</topic><topic>Hip</topic><topic>Inverse dynamics</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Knee</topic><topic>Legged locomotion</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Prostheses</topic><topic>prosthetics</topic><topic>Regeneration</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Walking</topic><topic>wearable robotics</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laschowski, Brokoslaw</creatorcontrib><creatorcontrib>Razavian, Reza Sharif</creatorcontrib><creatorcontrib>McPhee, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laschowski, Brokoslaw</au><au>Razavian, Reza Sharif</au><au>McPhee, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3058323</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2039-6447</orcidid><orcidid>https://orcid.org/0000-0003-1190-0816</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2576-3202 |
ispartof | IEEE transactions on medical robotics and bionics, 2021-05, Vol.3 (2), p.455-462 |
issn | 2576-3202 2576-3202 |
language | eng |
recordid | cdi_proquest_journals_2530110464 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Biological system modeling Biomechanics Dynamics efficiency Exoskeletons Force measurement Hip Inverse dynamics Joints (anatomy) Kinematics Knee Legged locomotion Parameter estimation Parameter identification Prostheses prosthetics Regeneration Rehabilitation Robotics Walking wearable robotics Young adults |
title | Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Stand-to-Sit%20Biomechanics%20for%20Robotic%20Exoskeletons%20and%20Prostheses%20With%20Energy%20Regeneration&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Laschowski,%20Brokoslaw&rft.date=2021-05-01&rft.volume=3&rft.issue=2&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3058323&rft_dat=%3Cproquest_RIE%3E2530110464%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530110464&rft_id=info:pmid/&rft_ieee_id=9351558&rfr_iscdi=true |