Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration

Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regenera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical robotics and bionics 2021-05, Vol.3 (2), p.455-462
Hauptverfasser: Laschowski, Brokoslaw, Razavian, Reza Sharif, McPhee, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 2
container_start_page 455
container_title IEEE transactions on medical robotics and bionics
container_volume 3
creator Laschowski, Brokoslaw
Razavian, Reza Sharif
McPhee, John
description Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.
doi_str_mv 10.1109/TMRB.2021.3058323
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2530110464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9351558</ieee_id><sourcerecordid>2530110464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</originalsourceid><addsrcrecordid>eNpNkFtLwzAYhoMoOOZ-gHgT8LozaZoeLt2YB5go28TL0KZf1sytmUkK7t-buiFe5SM873d4ELqmZEwpKe5WL4vJOCYxHTPCcxazMzSIeZZGLHye_6sv0ci5DSEB5SRj6QA1S73rtqXXpsVG4aUv2zryJlpqjyfa7EA2Zaulw8pYvDCV8Vri2bdxn7AFb1qHQwC_WeN8Aw4c_tC-wbMW7PqAF7CGUP12v0IXqtw6GJ3eIXp_mK2mT9H89fF5ej-PZFwwH3GgKVNZniRQMIAaJC-yCqqSsKJWJM9rKgmTvAKl0v6EumK5yngOac6V4myIbo9999Z8deC82JjOtmGkiDkjwVeSJoGiR0qGzZ0FJfZW70p7EJSI3qnonYreqTg5DZmbY0YDwB9fME55AH4AyGRzyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530110464</pqid></control><display><type>article</type><title>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</title><source>IEEE Electronic Library (IEL)</source><creator>Laschowski, Brokoslaw ; Razavian, Reza Sharif ; McPhee, John</creator><creatorcontrib>Laschowski, Brokoslaw ; Razavian, Reza Sharif ; McPhee, John</creatorcontrib><description>Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3058323</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Biological system modeling ; Biomechanics ; Dynamics ; efficiency ; Exoskeletons ; Force measurement ; Hip ; Inverse dynamics ; Joints (anatomy) ; Kinematics ; Knee ; Legged locomotion ; Parameter estimation ; Parameter identification ; Prostheses ; prosthetics ; Regeneration ; Rehabilitation ; Robotics ; Walking ; wearable robotics ; Young adults</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-05, Vol.3 (2), p.455-462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</citedby><cites>FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</cites><orcidid>0000-0003-2039-6447 ; 0000-0003-1190-0816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9351558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9351558$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laschowski, Brokoslaw</creatorcontrib><creatorcontrib>Razavian, Reza Sharif</creatorcontrib><creatorcontrib>McPhee, John</creatorcontrib><title>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.</description><subject>Actuators</subject><subject>Biological system modeling</subject><subject>Biomechanics</subject><subject>Dynamics</subject><subject>efficiency</subject><subject>Exoskeletons</subject><subject>Force measurement</subject><subject>Hip</subject><subject>Inverse dynamics</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Knee</subject><subject>Legged locomotion</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Prostheses</subject><subject>prosthetics</subject><subject>Regeneration</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Walking</subject><subject>wearable robotics</subject><subject>Young adults</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLwzAYhoMoOOZ-gHgT8LozaZoeLt2YB5go28TL0KZf1sytmUkK7t-buiFe5SM873d4ELqmZEwpKe5WL4vJOCYxHTPCcxazMzSIeZZGLHye_6sv0ci5DSEB5SRj6QA1S73rtqXXpsVG4aUv2zryJlpqjyfa7EA2Zaulw8pYvDCV8Vri2bdxn7AFb1qHQwC_WeN8Aw4c_tC-wbMW7PqAF7CGUP12v0IXqtw6GJ3eIXp_mK2mT9H89fF5ej-PZFwwH3GgKVNZniRQMIAaJC-yCqqSsKJWJM9rKgmTvAKl0v6EumK5yngOac6V4myIbo9999Z8deC82JjOtmGkiDkjwVeSJoGiR0qGzZ0FJfZW70p7EJSI3qnonYreqTg5DZmbY0YDwB9fME55AH4AyGRzyA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Laschowski, Brokoslaw</creator><creator>Razavian, Reza Sharif</creator><creator>McPhee, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2039-6447</orcidid><orcidid>https://orcid.org/0000-0003-1190-0816</orcidid></search><sort><creationdate>20210501</creationdate><title>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</title><author>Laschowski, Brokoslaw ; Razavian, Reza Sharif ; McPhee, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5e163f7844e93eedec597beba039df088d1c03c5beff60736db38f758e685ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Biological system modeling</topic><topic>Biomechanics</topic><topic>Dynamics</topic><topic>efficiency</topic><topic>Exoskeletons</topic><topic>Force measurement</topic><topic>Hip</topic><topic>Inverse dynamics</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Knee</topic><topic>Legged locomotion</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Prostheses</topic><topic>prosthetics</topic><topic>Regeneration</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Walking</topic><topic>wearable robotics</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laschowski, Brokoslaw</creatorcontrib><creatorcontrib>Razavian, Reza Sharif</creatorcontrib><creatorcontrib>McPhee, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laschowski, Brokoslaw</au><au>Razavian, Reza Sharif</au><au>McPhee, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>Previous studies of robotic exoskeletons and prostheses with regenerative actuators have focused on level-ground walking. Here we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamics to estimate the biomechanical energy available for electrical regeneration. Nine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification. Joint mechanical power was calculated from joint torques and rotational velocities and numerically integrated over time to estimate the joint biomechanical energy. The hip absorbed the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work on the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively. Assuming known regenerative actuator efficiencies (i.e., maximum 63%), robotic exoskeletons and prostheses could regenerate ~26 Joules of electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3058323</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2039-6447</orcidid><orcidid>https://orcid.org/0000-0003-1190-0816</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3202
ispartof IEEE transactions on medical robotics and bionics, 2021-05, Vol.3 (2), p.455-462
issn 2576-3202
2576-3202
language eng
recordid cdi_proquest_journals_2530110464
source IEEE Electronic Library (IEL)
subjects Actuators
Biological system modeling
Biomechanics
Dynamics
efficiency
Exoskeletons
Force measurement
Hip
Inverse dynamics
Joints (anatomy)
Kinematics
Knee
Legged locomotion
Parameter estimation
Parameter identification
Prostheses
prosthetics
Regeneration
Rehabilitation
Robotics
Walking
wearable robotics
Young adults
title Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Stand-to-Sit%20Biomechanics%20for%20Robotic%20Exoskeletons%20and%20Prostheses%20With%20Energy%20Regeneration&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Laschowski,%20Brokoslaw&rft.date=2021-05-01&rft.volume=3&rft.issue=2&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3058323&rft_dat=%3Cproquest_RIE%3E2530110464%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530110464&rft_id=info:pmid/&rft_ieee_id=9351558&rfr_iscdi=true