DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features

Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-01, Vol.22 (1), p.451-462
Hauptverfasser: Chu, Yanyi, Kaushik, Aman Chandra, Wang, Xiangeng, Wang, Wei, Zhang, Yufang, Shan, Xiaoqi, Salahub, Dennis Russell, Xiong, Yi, Wei, Dong-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 1
container_start_page 451
container_title Briefings in bioinformatics
container_volume 22
creator Chu, Yanyi
Kaushik, Aman Chandra
Wang, Xiangeng
Wang, Wei
Zhang, Yufang
Shan, Xiaoqi
Salahub, Dennis Russell
Xiong, Yi
Wei, Dong-Qing
description Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
doi_str_mv 10.1093/bib/bbz152
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_2529966678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbz152</oup_id><sourcerecordid>2529966678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlYv_gAJiBdhbdJNNllv0lotFLzU85KP2XZL26xJFqm_3q1bPXqaGebhHeZB6JqSB0rydKgrPdT6i_LRCepTJkTCCGenhz4TCWdZ2kMXIawJGREh6TnqpVRKThjto3qymCXjyfQRK2xUMMoCtgA1Lp2HEPHWWdjg6D6VtwHHFeDag61MrNwOuxJb3yyTqPwSIq52Ebz6WQWsVQCLW2i1176yuAQVmzbyEp2VahPg6lgH6H36vBi_JvO3l9n4aZ4YRmlMWJozLqimSkqSWy2kKQ1rRyi5hpwbzaxmIFQqrLQajLE8t5JplZGUUZkO0G2XW3v30bSvFGvX-F17shjxUZ5nWSYO1H1HGe9C8FAWta-2yu8LSoqD3KKVW3RyW_jmGNnoLdg_9NdmC9x1gGvq_4K-AaoGg1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529966678</pqid></control><display><type>article</type><title>DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features</title><source>Oxford Journals Open Access Collection</source><creator>Chu, Yanyi ; Kaushik, Aman Chandra ; Wang, Xiangeng ; Wang, Wei ; Zhang, Yufang ; Shan, Xiaoqi ; Salahub, Dennis Russell ; Xiong, Yi ; Wei, Dong-Qing</creator><creatorcontrib>Chu, Yanyi ; Kaushik, Aman Chandra ; Wang, Xiangeng ; Wang, Wei ; Zhang, Yufang ; Shan, Xiaoqi ; Salahub, Dennis Russell ; Xiong, Yi ; Wei, Dong-Qing</creatorcontrib><description>Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbz152</identifier><identifier>PMID: 31885041</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Artificial neural networks ; Computer applications ; Datasets ; Drugs ; Feature extraction ; Machine learning ; Neural networks ; Predictions ; Similarity ; Source code ; Therapeutic targets</subject><ispartof>Briefings in bioinformatics, 2021-01, Vol.22 (1), p.451-462</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183</citedby><cites>FETCH-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbz152$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31885041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Yanyi</creatorcontrib><creatorcontrib>Kaushik, Aman Chandra</creatorcontrib><creatorcontrib>Wang, Xiangeng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><creatorcontrib>Shan, Xiaoqi</creatorcontrib><creatorcontrib>Salahub, Dennis Russell</creatorcontrib><creatorcontrib>Xiong, Yi</creatorcontrib><creatorcontrib>Wei, Dong-Qing</creatorcontrib><title>DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.</description><subject>Artificial neural networks</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Drugs</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Similarity</subject><subject>Source code</subject><subject>Therapeutic targets</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlYv_gAJiBdhbdJNNllv0lotFLzU85KP2XZL26xJFqm_3q1bPXqaGebhHeZB6JqSB0rydKgrPdT6i_LRCepTJkTCCGenhz4TCWdZ2kMXIawJGREh6TnqpVRKThjto3qymCXjyfQRK2xUMMoCtgA1Lp2HEPHWWdjg6D6VtwHHFeDag61MrNwOuxJb3yyTqPwSIq52Ebz6WQWsVQCLW2i1176yuAQVmzbyEp2VahPg6lgH6H36vBi_JvO3l9n4aZ4YRmlMWJozLqimSkqSWy2kKQ1rRyi5hpwbzaxmIFQqrLQajLE8t5JplZGUUZkO0G2XW3v30bSvFGvX-F17shjxUZ5nWSYO1H1HGe9C8FAWta-2yu8LSoqD3KKVW3RyW_jmGNnoLdg_9NdmC9x1gGvq_4K-AaoGg1c</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Chu, Yanyi</creator><creator>Kaushik, Aman Chandra</creator><creator>Wang, Xiangeng</creator><creator>Wang, Wei</creator><creator>Zhang, Yufang</creator><creator>Shan, Xiaoqi</creator><creator>Salahub, Dennis Russell</creator><creator>Xiong, Yi</creator><creator>Wei, Dong-Qing</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20210118</creationdate><title>DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features</title><author>Chu, Yanyi ; Kaushik, Aman Chandra ; Wang, Xiangeng ; Wang, Wei ; Zhang, Yufang ; Shan, Xiaoqi ; Salahub, Dennis Russell ; Xiong, Yi ; Wei, Dong-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Drugs</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Similarity</topic><topic>Source code</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yanyi</creatorcontrib><creatorcontrib>Kaushik, Aman Chandra</creatorcontrib><creatorcontrib>Wang, Xiangeng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><creatorcontrib>Shan, Xiaoqi</creatorcontrib><creatorcontrib>Salahub, Dennis Russell</creatorcontrib><creatorcontrib>Xiong, Yi</creatorcontrib><creatorcontrib>Wei, Dong-Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Yanyi</au><au>Kaushik, Aman Chandra</au><au>Wang, Xiangeng</au><au>Wang, Wei</au><au>Zhang, Yufang</au><au>Shan, Xiaoqi</au><au>Salahub, Dennis Russell</au><au>Xiong, Yi</au><au>Wei, Dong-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>451</spage><epage>462</epage><pages>451-462</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31885041</pmid><doi>10.1093/bib/bbz152</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2021-01, Vol.22 (1), p.451-462
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_journals_2529966678
source Oxford Journals Open Access Collection
subjects Artificial neural networks
Computer applications
Datasets
Drugs
Feature extraction
Machine learning
Neural networks
Predictions
Similarity
Source code
Therapeutic targets
title DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DTI-CDF:%20a%20cascade%20deep%20forest%20model%20towards%20the%20prediction%20of%20drug-target%20interactions%20based%20on%20hybrid%20features&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Chu,%20Yanyi&rft.date=2021-01-18&rft.volume=22&rft.issue=1&rft.spage=451&rft.epage=462&rft.pages=451-462&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbz152&rft_dat=%3Cproquest_TOX%3E2529966678%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529966678&rft_id=info:pmid/31885041&rft_oup_id=10.1093/bib/bbz152&rfr_iscdi=true