Setting the evolutionary timeline: Tillandsia landbeckii in the Chilean Atacama Desert
The Chilean Atacama Desert is among the oldest deserts of the world. Here, Tillandsia landbeckii is forming a unique vegetation type known as Tillandsia lomas. This vegetation consists in its typical configuration of one single vascular plant species only and forms regular linear structures in a slo...
Gespeichert in:
Veröffentlicht in: | Plant systematics and evolution 2021-06, Vol.307 (3), p.1-12, Article 39 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Plant systematics and evolution |
container_volume | 307 |
creator | Möbus, Johanna Kiefer, Christiane Quandt, Dietmar Barfuss, Michael H. Koch, Marcus A. |
description | The Chilean Atacama Desert is among the oldest deserts of the world. Here, Tillandsia landbeckii is forming a unique vegetation type known as Tillandsia lomas. This vegetation consists in its typical configuration of one single vascular plant species only and forms regular linear structures in a sloped landscape and is largely depending on fog occurrence as dominant source of water supply. Without developing a typical root system, there are only few other terrestrial Tillandsia species growing on bare sand in Chile and Peru such as T. marconae, T. virescens, T. purpureaor T. latifolia. Although phylogenetic evidence is limited, convergent evolution of this unique growth behavior is evident. The predominantly arid and hyper-arid climate exists since the Early Miocene, which raises the question about timing of T. landbeckii evolutionary history. Phylogenomic analyses using whole plastome sequence data highlight the onset of diversification in T. landbeckii approximately 500,000 years ago. We also demonstrate subsequent secondary genetic contact with T. purpurea during the Late Pleistocene using DNA sequence data and genome size estimates, which resulted into the formation of T. marconae. |
doi_str_mv | 10.1007/s00606-021-01760-5 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2529604804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48774899</jstor_id><sourcerecordid>48774899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c1742b3b03f2e81ad08f9a4448b9d4656412b507d7e4eee94e5bd385b715b8893</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_QBAqrqMv38lSilWh4EJdh0nnTZ3SztQkFfz3po7oztXbnHPv4xJyzuCaAZibBKBBU-CMAjMaqDogI6aZopoxOCQjEMZSrp05JicprWBPSTMil8-Yc9stJ_kNJ_jRr3e57bsqfk5yu8F12-EpOWqqdcKznzsmr7O7l-kDnT_dP05v53QhrMp0wYzkQQQQDUfLqhps4yoppQ2ullppyXhQYGqDEhGdRBXqYgbDVLDWiTG5GnK3sX_fYcp-1e9iVyo9V9xpkBZkofhALWKfUsTGb2O7Kf96Bn4_hR-m8GUK_z2FV0USg5QK3C0x_kX_a10M1irlPv72SGuMtM6JL4DTaPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529604804</pqid></control><display><type>article</type><title>Setting the evolutionary timeline: Tillandsia landbeckii in the Chilean Atacama Desert</title><source>Springer Nature - Complete Springer Journals</source><creator>Möbus, Johanna ; Kiefer, Christiane ; Quandt, Dietmar ; Barfuss, Michael H. ; Koch, Marcus A.</creator><creatorcontrib>Möbus, Johanna ; Kiefer, Christiane ; Quandt, Dietmar ; Barfuss, Michael H. ; Koch, Marcus A.</creatorcontrib><description>The Chilean Atacama Desert is among the oldest deserts of the world. Here, Tillandsia landbeckii is forming a unique vegetation type known as Tillandsia lomas. This vegetation consists in its typical configuration of one single vascular plant species only and forms regular linear structures in a sloped landscape and is largely depending on fog occurrence as dominant source of water supply. Without developing a typical root system, there are only few other terrestrial Tillandsia species growing on bare sand in Chile and Peru such as T. marconae, T. virescens, T. purpureaor T. latifolia. Although phylogenetic evidence is limited, convergent evolution of this unique growth behavior is evident. The predominantly arid and hyper-arid climate exists since the Early Miocene, which raises the question about timing of T. landbeckii evolutionary history. Phylogenomic analyses using whole plastome sequence data highlight the onset of diversification in T. landbeckii approximately 500,000 years ago. We also demonstrate subsequent secondary genetic contact with T. purpurea during the Late Pleistocene using DNA sequence data and genome size estimates, which resulted into the formation of T. marconae.</description><identifier>ISSN: 0378-2697</identifier><identifier>EISSN: 1615-6110</identifier><identifier>EISSN: 2199-6881</identifier><identifier>DOI: 10.1007/s00606-021-01760-5</identifier><language>eng</language><publisher>Vienna: Springer Science + Business Media</publisher><subject>Arid climates ; Aridity ; Biological evolution ; Biomedical and Life Sciences ; Deoxyribonucleic acid ; Deserts ; DNA ; Evolution ; Fog ; Genomes ; Life Sciences ; Living at its dry limits - Tillandsiales in the Atacama Desert ; Miocene ; Nucleotide sequence ; ORIGINAL ARTICLE ; Phylogeny ; Plant Anatomy/Development ; Plant Ecology ; Plant Sciences ; Plant species ; Plant Systematics/Taxonomy/Biogeography ; Plants ; Pleistocene ; Tillandsia ; Vegetation ; Vegetation type ; Water supply</subject><ispartof>Plant systematics and evolution, 2021-06, Vol.307 (3), p.1-12, Article 39</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c1742b3b03f2e81ad08f9a4448b9d4656412b507d7e4eee94e5bd385b715b8893</citedby><cites>FETCH-LOGICAL-c385t-c1742b3b03f2e81ad08f9a4448b9d4656412b507d7e4eee94e5bd385b715b8893</cites><orcidid>0000-0002-9126-513X ; 0000-0002-1693-6829 ; 0000-0001-7172-9454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00606-021-01760-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00606-021-01760-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Möbus, Johanna</creatorcontrib><creatorcontrib>Kiefer, Christiane</creatorcontrib><creatorcontrib>Quandt, Dietmar</creatorcontrib><creatorcontrib>Barfuss, Michael H.</creatorcontrib><creatorcontrib>Koch, Marcus A.</creatorcontrib><title>Setting the evolutionary timeline: Tillandsia landbeckii in the Chilean Atacama Desert</title><title>Plant systematics and evolution</title><addtitle>Plant Syst Evol</addtitle><description>The Chilean Atacama Desert is among the oldest deserts of the world. Here, Tillandsia landbeckii is forming a unique vegetation type known as Tillandsia lomas. This vegetation consists in its typical configuration of one single vascular plant species only and forms regular linear structures in a sloped landscape and is largely depending on fog occurrence as dominant source of water supply. Without developing a typical root system, there are only few other terrestrial Tillandsia species growing on bare sand in Chile and Peru such as T. marconae, T. virescens, T. purpureaor T. latifolia. Although phylogenetic evidence is limited, convergent evolution of this unique growth behavior is evident. The predominantly arid and hyper-arid climate exists since the Early Miocene, which raises the question about timing of T. landbeckii evolutionary history. Phylogenomic analyses using whole plastome sequence data highlight the onset of diversification in T. landbeckii approximately 500,000 years ago. We also demonstrate subsequent secondary genetic contact with T. purpurea during the Late Pleistocene using DNA sequence data and genome size estimates, which resulted into the formation of T. marconae.</description><subject>Arid climates</subject><subject>Aridity</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>Deserts</subject><subject>DNA</subject><subject>Evolution</subject><subject>Fog</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Living at its dry limits - Tillandsiales in the Atacama Desert</subject><subject>Miocene</subject><subject>Nucleotide sequence</subject><subject>ORIGINAL ARTICLE</subject><subject>Phylogeny</subject><subject>Plant Anatomy/Development</subject><subject>Plant Ecology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Plants</subject><subject>Pleistocene</subject><subject>Tillandsia</subject><subject>Vegetation</subject><subject>Vegetation type</subject><subject>Water supply</subject><issn>0378-2697</issn><issn>1615-6110</issn><issn>2199-6881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWKt_QBAqrqMv38lSilWh4EJdh0nnTZ3SztQkFfz3po7oztXbnHPv4xJyzuCaAZibBKBBU-CMAjMaqDogI6aZopoxOCQjEMZSrp05JicprWBPSTMil8-Yc9stJ_kNJ_jRr3e57bsqfk5yu8F12-EpOWqqdcKznzsmr7O7l-kDnT_dP05v53QhrMp0wYzkQQQQDUfLqhps4yoppQ2ullppyXhQYGqDEhGdRBXqYgbDVLDWiTG5GnK3sX_fYcp-1e9iVyo9V9xpkBZkofhALWKfUsTGb2O7Kf96Bn4_hR-m8GUK_z2FV0USg5QK3C0x_kX_a10M1irlPv72SGuMtM6JL4DTaPs</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Möbus, Johanna</creator><creator>Kiefer, Christiane</creator><creator>Quandt, Dietmar</creator><creator>Barfuss, Michael H.</creator><creator>Koch, Marcus A.</creator><general>Springer Science + Business Media</general><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9126-513X</orcidid><orcidid>https://orcid.org/0000-0002-1693-6829</orcidid><orcidid>https://orcid.org/0000-0001-7172-9454</orcidid></search><sort><creationdate>20210601</creationdate><title>Setting the evolutionary timeline</title><author>Möbus, Johanna ; Kiefer, Christiane ; Quandt, Dietmar ; Barfuss, Michael H. ; Koch, Marcus A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c1742b3b03f2e81ad08f9a4448b9d4656412b507d7e4eee94e5bd385b715b8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arid climates</topic><topic>Aridity</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>Deserts</topic><topic>DNA</topic><topic>Evolution</topic><topic>Fog</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Living at its dry limits - Tillandsiales in the Atacama Desert</topic><topic>Miocene</topic><topic>Nucleotide sequence</topic><topic>ORIGINAL ARTICLE</topic><topic>Phylogeny</topic><topic>Plant Anatomy/Development</topic><topic>Plant Ecology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Plants</topic><topic>Pleistocene</topic><topic>Tillandsia</topic><topic>Vegetation</topic><topic>Vegetation type</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möbus, Johanna</creatorcontrib><creatorcontrib>Kiefer, Christiane</creatorcontrib><creatorcontrib>Quandt, Dietmar</creatorcontrib><creatorcontrib>Barfuss, Michael H.</creatorcontrib><creatorcontrib>Koch, Marcus A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Plant systematics and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möbus, Johanna</au><au>Kiefer, Christiane</au><au>Quandt, Dietmar</au><au>Barfuss, Michael H.</au><au>Koch, Marcus A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Setting the evolutionary timeline: Tillandsia landbeckii in the Chilean Atacama Desert</atitle><jtitle>Plant systematics and evolution</jtitle><stitle>Plant Syst Evol</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>307</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>39</artnum><issn>0378-2697</issn><eissn>1615-6110</eissn><eissn>2199-6881</eissn><abstract>The Chilean Atacama Desert is among the oldest deserts of the world. Here, Tillandsia landbeckii is forming a unique vegetation type known as Tillandsia lomas. This vegetation consists in its typical configuration of one single vascular plant species only and forms regular linear structures in a sloped landscape and is largely depending on fog occurrence as dominant source of water supply. Without developing a typical root system, there are only few other terrestrial Tillandsia species growing on bare sand in Chile and Peru such as T. marconae, T. virescens, T. purpureaor T. latifolia. Although phylogenetic evidence is limited, convergent evolution of this unique growth behavior is evident. The predominantly arid and hyper-arid climate exists since the Early Miocene, which raises the question about timing of T. landbeckii evolutionary history. Phylogenomic analyses using whole plastome sequence data highlight the onset of diversification in T. landbeckii approximately 500,000 years ago. We also demonstrate subsequent secondary genetic contact with T. purpurea during the Late Pleistocene using DNA sequence data and genome size estimates, which resulted into the formation of T. marconae.</abstract><cop>Vienna</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s00606-021-01760-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9126-513X</orcidid><orcidid>https://orcid.org/0000-0002-1693-6829</orcidid><orcidid>https://orcid.org/0000-0001-7172-9454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-2697 |
ispartof | Plant systematics and evolution, 2021-06, Vol.307 (3), p.1-12, Article 39 |
issn | 0378-2697 1615-6110 2199-6881 |
language | eng |
recordid | cdi_proquest_journals_2529604804 |
source | Springer Nature - Complete Springer Journals |
subjects | Arid climates Aridity Biological evolution Biomedical and Life Sciences Deoxyribonucleic acid Deserts DNA Evolution Fog Genomes Life Sciences Living at its dry limits - Tillandsiales in the Atacama Desert Miocene Nucleotide sequence ORIGINAL ARTICLE Phylogeny Plant Anatomy/Development Plant Ecology Plant Sciences Plant species Plant Systematics/Taxonomy/Biogeography Plants Pleistocene Tillandsia Vegetation Vegetation type Water supply |
title | Setting the evolutionary timeline: Tillandsia landbeckii in the Chilean Atacama Desert |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Setting%20the%20evolutionary%20timeline:%20Tillandsia%20landbeckii%20in%20the%20Chilean%20Atacama%20Desert&rft.jtitle=Plant%20systematics%20and%20evolution&rft.au=M%C3%B6bus,%20Johanna&rft.date=2021-06-01&rft.volume=307&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=39&rft.issn=0378-2697&rft.eissn=1615-6110&rft_id=info:doi/10.1007/s00606-021-01760-5&rft_dat=%3Cjstor_proqu%3E48774899%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529604804&rft_id=info:pmid/&rft_jstor_id=48774899&rfr_iscdi=true |