Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach
Unmanned Aerial Vehicle (UAV) can play an important role in wireless systems as it can be deployed flexibly to help improve coverage and quality of communication. In this paper, we consider a UAV-assisted Mobile Edge Computing (MEC) system, in which a UAV equipped with computing resources can provid...
Gespeichert in:
Veröffentlicht in: | Wireless networks 2021-05, Vol.27 (4), p.2991-3006 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3006 |
---|---|
container_issue | 4 |
container_start_page | 2991 |
container_title | Wireless networks |
container_volume | 27 |
creator | Wang, Yunpeng Fang, Weiwei Ding, Yi Xiong, Naixue |
description | Unmanned Aerial Vehicle (UAV) can play an important role in wireless systems as it can be deployed flexibly to help improve coverage and quality of communication. In this paper, we consider a UAV-assisted Mobile Edge Computing (MEC) system, in which a UAV equipped with computing resources can provide offloading services to nearby user equipments (UEs). The UE offloads a portion of the computing tasks to the UAV, while the remaining tasks are locally executed at this UE. Subject to constraints on discrete variables and energy consumption, we aim to minimize the maximum processing delay by jointly optimizing user scheduling, task offloading ratio, UAV flight angle and flight speed. Considering the non-convexity of this problem, the high-dimensional state space and the continuous action space, we propose a computation offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) in Reinforcement Learning (RL). With this algorithm, we can obtain the optimal computation offloading policy in an uncontrollable dynamic environment. Extensive experiments have been conducted, and the results show that the proposed DDPG-based algorithm can quickly converge to the optimum. Meanwhile, our algorithm can achieve a significant improvement in processing delay as compared with baseline algorithms, e.g., Deep Q Network (DQN). |
doi_str_mv | 10.1007/s11276-021-02632-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529604735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529604735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3f445a6812a399084069eb9b81f6af014840e9145d03735e64a24cf2b8a35ed3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssQ74kTgxu6riJVViQ9laTmIHV0kcbHfRfj1Dg8SOhcfj0T13rIvQDSV3lJDyPlLKSpERRuEIzrLDCVrQomRZRaU4hZ4wlhHCq3N0EeOWEFJxKRdov_LDtEs6OT9ib23vdevGDvspucEd5rn1AW-WH5mO0cVkWjz42vUGm7YzuDkaAPOANW6NmaAkEwY3gtY1ePK9a_a4C2BsxoT1NAWvm88rdGZ1H831732JNk-P76uXbP32_LparrOGU5mg2jwvtKgo0_BjUuVESFPLuqJWaEtoDhMjaV60hJe8MCLXLG8sqysNr5ZfotvZF9Z-7UxMaut3YYSVihVMCpIDBSo2q5rgYwzGqim4QYe9okT9RKzmiBVErI4RqwNAfIYiiMfOhD_rf6hv4-yBBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529604735</pqid></control><display><type>article</type><title>Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Yunpeng ; Fang, Weiwei ; Ding, Yi ; Xiong, Naixue</creator><creatorcontrib>Wang, Yunpeng ; Fang, Weiwei ; Ding, Yi ; Xiong, Naixue</creatorcontrib><description>Unmanned Aerial Vehicle (UAV) can play an important role in wireless systems as it can be deployed flexibly to help improve coverage and quality of communication. In this paper, we consider a UAV-assisted Mobile Edge Computing (MEC) system, in which a UAV equipped with computing resources can provide offloading services to nearby user equipments (UEs). The UE offloads a portion of the computing tasks to the UAV, while the remaining tasks are locally executed at this UE. Subject to constraints on discrete variables and energy consumption, we aim to minimize the maximum processing delay by jointly optimizing user scheduling, task offloading ratio, UAV flight angle and flight speed. Considering the non-convexity of this problem, the high-dimensional state space and the continuous action space, we propose a computation offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) in Reinforcement Learning (RL). With this algorithm, we can obtain the optimal computation offloading policy in an uncontrollable dynamic environment. Extensive experiments have been conducted, and the results show that the proposed DDPG-based algorithm can quickly converge to the optimum. Meanwhile, our algorithm can achieve a significant improvement in processing delay as compared with baseline algorithms, e.g., Deep Q Network (DQN).</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-021-02632-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Airspeed ; Algorithms ; Communications Engineering ; Computation offloading ; Computer Communication Networks ; Convexity ; Edge computing ; Electrical Engineering ; Energy consumption ; Engineering ; IT in Business ; Machine learning ; Mobile computing ; Networks ; Optimization ; Original Paper ; Task scheduling ; Unmanned aerial vehicles ; Wireless networks</subject><ispartof>Wireless networks, 2021-05, Vol.27 (4), p.2991-3006</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3f445a6812a399084069eb9b81f6af014840e9145d03735e64a24cf2b8a35ed3</citedby><cites>FETCH-LOGICAL-c319t-c3f445a6812a399084069eb9b81f6af014840e9145d03735e64a24cf2b8a35ed3</cites><orcidid>0000-0002-6407-7467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11276-021-02632-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11276-021-02632-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Yunpeng</creatorcontrib><creatorcontrib>Fang, Weiwei</creatorcontrib><creatorcontrib>Ding, Yi</creatorcontrib><creatorcontrib>Xiong, Naixue</creatorcontrib><title>Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>Unmanned Aerial Vehicle (UAV) can play an important role in wireless systems as it can be deployed flexibly to help improve coverage and quality of communication. In this paper, we consider a UAV-assisted Mobile Edge Computing (MEC) system, in which a UAV equipped with computing resources can provide offloading services to nearby user equipments (UEs). The UE offloads a portion of the computing tasks to the UAV, while the remaining tasks are locally executed at this UE. Subject to constraints on discrete variables and energy consumption, we aim to minimize the maximum processing delay by jointly optimizing user scheduling, task offloading ratio, UAV flight angle and flight speed. Considering the non-convexity of this problem, the high-dimensional state space and the continuous action space, we propose a computation offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) in Reinforcement Learning (RL). With this algorithm, we can obtain the optimal computation offloading policy in an uncontrollable dynamic environment. Extensive experiments have been conducted, and the results show that the proposed DDPG-based algorithm can quickly converge to the optimum. Meanwhile, our algorithm can achieve a significant improvement in processing delay as compared with baseline algorithms, e.g., Deep Q Network (DQN).</description><subject>Airspeed</subject><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Convexity</subject><subject>Edge computing</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Networks</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Task scheduling</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wssQ74kTgxu6riJVViQ9laTmIHV0kcbHfRfj1Dg8SOhcfj0T13rIvQDSV3lJDyPlLKSpERRuEIzrLDCVrQomRZRaU4hZ4wlhHCq3N0EeOWEFJxKRdov_LDtEs6OT9ib23vdevGDvspucEd5rn1AW-WH5mO0cVkWjz42vUGm7YzuDkaAPOANW6NmaAkEwY3gtY1ePK9a_a4C2BsxoT1NAWvm88rdGZ1H831732JNk-P76uXbP32_LparrOGU5mg2jwvtKgo0_BjUuVESFPLuqJWaEtoDhMjaV60hJe8MCLXLG8sqysNr5ZfotvZF9Z-7UxMaut3YYSVihVMCpIDBSo2q5rgYwzGqim4QYe9okT9RKzmiBVErI4RqwNAfIYiiMfOhD_rf6hv4-yBBQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Wang, Yunpeng</creator><creator>Fang, Weiwei</creator><creator>Ding, Yi</creator><creator>Xiong, Naixue</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6407-7467</orcidid></search><sort><creationdate>20210501</creationdate><title>Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach</title><author>Wang, Yunpeng ; Fang, Weiwei ; Ding, Yi ; Xiong, Naixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3f445a6812a399084069eb9b81f6af014840e9145d03735e64a24cf2b8a35ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airspeed</topic><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Convexity</topic><topic>Edge computing</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Networks</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Task scheduling</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunpeng</creatorcontrib><creatorcontrib>Fang, Weiwei</creatorcontrib><creatorcontrib>Ding, Yi</creatorcontrib><creatorcontrib>Xiong, Naixue</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunpeng</au><au>Fang, Weiwei</au><au>Ding, Yi</au><au>Xiong, Naixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>2991</spage><epage>3006</epage><pages>2991-3006</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>Unmanned Aerial Vehicle (UAV) can play an important role in wireless systems as it can be deployed flexibly to help improve coverage and quality of communication. In this paper, we consider a UAV-assisted Mobile Edge Computing (MEC) system, in which a UAV equipped with computing resources can provide offloading services to nearby user equipments (UEs). The UE offloads a portion of the computing tasks to the UAV, while the remaining tasks are locally executed at this UE. Subject to constraints on discrete variables and energy consumption, we aim to minimize the maximum processing delay by jointly optimizing user scheduling, task offloading ratio, UAV flight angle and flight speed. Considering the non-convexity of this problem, the high-dimensional state space and the continuous action space, we propose a computation offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) in Reinforcement Learning (RL). With this algorithm, we can obtain the optimal computation offloading policy in an uncontrollable dynamic environment. Extensive experiments have been conducted, and the results show that the proposed DDPG-based algorithm can quickly converge to the optimum. Meanwhile, our algorithm can achieve a significant improvement in processing delay as compared with baseline algorithms, e.g., Deep Q Network (DQN).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-021-02632-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6407-7467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-0038 |
ispartof | Wireless networks, 2021-05, Vol.27 (4), p.2991-3006 |
issn | 1022-0038 1572-8196 |
language | eng |
recordid | cdi_proquest_journals_2529604735 |
source | Springer Nature - Complete Springer Journals |
subjects | Airspeed Algorithms Communications Engineering Computation offloading Computer Communication Networks Convexity Edge computing Electrical Engineering Energy consumption Engineering IT in Business Machine learning Mobile computing Networks Optimization Original Paper Task scheduling Unmanned aerial vehicles Wireless networks |
title | Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20offloading%20optimization%20for%20UAV-assisted%20mobile%20edge%20computing:%20a%20deep%20deterministic%20policy%20gradient%20approach&rft.jtitle=Wireless%20networks&rft.au=Wang,%20Yunpeng&rft.date=2021-05-01&rft.volume=27&rft.issue=4&rft.spage=2991&rft.epage=3006&rft.pages=2991-3006&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-021-02632-z&rft_dat=%3Cproquest_cross%3E2529604735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529604735&rft_id=info:pmid/&rfr_iscdi=true |