Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection

The proposed work presents thyroid detection strategy by addressing the various challenges faced when raw data is applied to complex neural network like structure. The authors present a Multi-Layer Tree Liquid State Machine Recurrent Auto encoder for the detection of the thyroid nodules. The tree ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-05, Vol.80 (12), p.17773-17783
Hauptverfasser: Saktheeswari, M., Balasubramanian, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17783
container_issue 12
container_start_page 17773
container_title Multimedia tools and applications
container_volume 80
creator Saktheeswari, M.
Balasubramanian, T.
description The proposed work presents thyroid detection strategy by addressing the various challenges faced when raw data is applied to complex neural network like structure. The authors present a Multi-Layer Tree Liquid State Machine Recurrent Auto encoder for the detection of the thyroid nodules. The tree based architecture prevents the loss of original information from dataset when applied to machine learning models like neural network. Liquid State Machine (LSM) prevents the loss of temporal feature of the data from the dataset. The multi layered architecture of the proposed system helps to classify the thyroid stage accurately. The classification rate of the proposed strategy increased when compared to other techniques where the aspect of dataset is not considered.
doi_str_mv 10.1007/s11042-020-10243-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529597551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529597551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a8e88e0b391c63b6bcf396812a4065f015f3e1aea5297e1bbfbadc2812332c4c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuC62hu0jTtUgZfMCKIrkOa3jgdOs1Mki7m3xut4M7VPYvvOxcOIVfAboAxdRsBWMkp44wC46Wg6ogsQKocFIfjnEXNqJIMTslZjBvGoJK8XJC3l2lIPR3MAUORAmIx9Pup74qYTMJia-y6H7EIaKcQcEyFmZIvcLS-y4LzWVofgs9Chwlt6v14QU6cGSJe_t5z8vFw_758oqvXx-fl3YpaAU2ipsa6RtaKBmwl2qq1TjRVDdyUrJKOgXQCwaCRvFEIbeta01meASG4La04J9dz7y74_YQx6Y2fwphfap4d2SgpIVN8pmzwMQZ0ehf6rQkHDUx_b6fn7XTeTv9sp1WWxCzFDI-fGP6q_7G-ALqackc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529597551</pqid></control><display><type>article</type><title>Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saktheeswari, M. ; Balasubramanian, T.</creator><creatorcontrib>Saktheeswari, M. ; Balasubramanian, T.</creatorcontrib><description>The proposed work presents thyroid detection strategy by addressing the various challenges faced when raw data is applied to complex neural network like structure. The authors present a Multi-Layer Tree Liquid State Machine Recurrent Auto encoder for the detection of the thyroid nodules. The tree based architecture prevents the loss of original information from dataset when applied to machine learning models like neural network. Liquid State Machine (LSM) prevents the loss of temporal feature of the data from the dataset. The multi layered architecture of the proposed system helps to classify the thyroid stage accurately. The classification rate of the proposed strategy increased when compared to other techniques where the aspect of dataset is not considered.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10243-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coders ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Machine learning ; Multilayers ; Multimedia Information Systems ; Neural networks ; Nodules ; Special Purpose and Application-Based Systems ; State machines ; Thyroid gland</subject><ispartof>Multimedia tools and applications, 2021-05, Vol.80 (12), p.17773-17783</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a8e88e0b391c63b6bcf396812a4065f015f3e1aea5297e1bbfbadc2812332c4c3</citedby><cites>FETCH-LOGICAL-c319t-a8e88e0b391c63b6bcf396812a4065f015f3e1aea5297e1bbfbadc2812332c4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10243-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10243-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saktheeswari, M.</creatorcontrib><creatorcontrib>Balasubramanian, T.</creatorcontrib><title>Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The proposed work presents thyroid detection strategy by addressing the various challenges faced when raw data is applied to complex neural network like structure. The authors present a Multi-Layer Tree Liquid State Machine Recurrent Auto encoder for the detection of the thyroid nodules. The tree based architecture prevents the loss of original information from dataset when applied to machine learning models like neural network. Liquid State Machine (LSM) prevents the loss of temporal feature of the data from the dataset. The multi layered architecture of the proposed system helps to classify the thyroid stage accurately. The classification rate of the proposed strategy increased when compared to other techniques where the aspect of dataset is not considered.</description><subject>Coders</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Nodules</subject><subject>Special Purpose and Application-Based Systems</subject><subject>State machines</subject><subject>Thyroid gland</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOD7-gKuC62hu0jTtUgZfMCKIrkOa3jgdOs1Mki7m3xut4M7VPYvvOxcOIVfAboAxdRsBWMkp44wC46Wg6ogsQKocFIfjnEXNqJIMTslZjBvGoJK8XJC3l2lIPR3MAUORAmIx9Pup74qYTMJia-y6H7EIaKcQcEyFmZIvcLS-y4LzWVofgs9Chwlt6v14QU6cGSJe_t5z8vFw_758oqvXx-fl3YpaAU2ipsa6RtaKBmwl2qq1TjRVDdyUrJKOgXQCwaCRvFEIbeta01meASG4La04J9dz7y74_YQx6Y2fwphfap4d2SgpIVN8pmzwMQZ0ehf6rQkHDUx_b6fn7XTeTv9sp1WWxCzFDI-fGP6q_7G-ALqackc</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Saktheeswari, M.</creator><creator>Balasubramanian, T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210501</creationdate><title>Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection</title><author>Saktheeswari, M. ; Balasubramanian, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a8e88e0b391c63b6bcf396812a4065f015f3e1aea5297e1bbfbadc2812332c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coders</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Nodules</topic><topic>Special Purpose and Application-Based Systems</topic><topic>State machines</topic><topic>Thyroid gland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saktheeswari, M.</creatorcontrib><creatorcontrib>Balasubramanian, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saktheeswari, M.</au><au>Balasubramanian, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>80</volume><issue>12</issue><spage>17773</spage><epage>17783</epage><pages>17773-17783</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The proposed work presents thyroid detection strategy by addressing the various challenges faced when raw data is applied to complex neural network like structure. The authors present a Multi-Layer Tree Liquid State Machine Recurrent Auto encoder for the detection of the thyroid nodules. The tree based architecture prevents the loss of original information from dataset when applied to machine learning models like neural network. Liquid State Machine (LSM) prevents the loss of temporal feature of the data from the dataset. The multi layered architecture of the proposed system helps to classify the thyroid stage accurately. The classification rate of the proposed strategy increased when compared to other techniques where the aspect of dataset is not considered.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10243-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-05, Vol.80 (12), p.17773-17783
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2529597551
source SpringerLink Journals - AutoHoldings
subjects Coders
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Machine learning
Multilayers
Multimedia Information Systems
Neural networks
Nodules
Special Purpose and Application-Based Systems
State machines
Thyroid gland
title Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-layer%20tree%20liquid%20state%20machine%20recurrent%20auto%20encoder%20for%20thyroid%20detection&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Saktheeswari,%20M.&rft.date=2021-05-01&rft.volume=80&rft.issue=12&rft.spage=17773&rft.epage=17783&rft.pages=17773-17783&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10243-7&rft_dat=%3Cproquest_cross%3E2529597551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529597551&rft_id=info:pmid/&rfr_iscdi=true