Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles

Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-09, Vol.138 (33), p.n/a
Hauptverfasser: Silva, Thiago Schroeder, Silva, Denise Abatti Kasper, Nogueira, André Lourenço
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Journal of applied polymer science
container_volume 138
creator Silva, Thiago Schroeder
Silva, Denise Abatti Kasper
Nogueira, André Lourenço
description Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.
doi_str_mv 10.1002/app.50806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529367788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529367788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtHYcJ_ZYRdykVHSA2XKdE9VVUgc7FcrGI_CMPAmGsDKd4Xznoh-ha0oWlJB0qft-wYkg-QmaUSKLJMtTcYpmsUcTISU_Rxch7AmhlJN8hswahsb5zh7wbqy9M7vWeVsDDscwaHuAGntoQQfAW-t6144deGtwGMMAHTau612IaDviTVWtvj4-y3WJO2u867UfrGkhXKKzRrcBrv7qHL3e372Uj0n1_PBUrqrEMJblCRVNmotaF0W-zRgjotFcaM55Y7hkTIIERiWHjBdNk3HJJdFQm7QmhRCxsjm6mfb23r0dIQxq747-EE-qlKeS5UWEUd1OKr4YgodG9d522o-KEvWToYoZqt8Mo11O9t22MP4P1WqzmSa-AbxHdMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529367788</pqid></control><display><type>article</type><title>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Silva, Thiago Schroeder ; Silva, Denise Abatti Kasper ; Nogueira, André Lourenço</creator><creatorcontrib>Silva, Thiago Schroeder ; Silva, Denise Abatti Kasper ; Nogueira, André Lourenço</creatorcontrib><description>Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.50806</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>biopolymers and renewable polymers ; Carboxymethyl cellulose ; cellulose and other wood products ; Diabetes mellitus ; Differential scanning calorimetry ; drug delivery systems ; Emission analysis ; Emulsifiers ; Encapsulation ; Field emission microscopy ; Lactic acid ; Materials science ; Metformin ; Microparticles ; Polymers ; Side effects ; Spectrophotometry ; Sustained release ; Thermogravimetric analysis</subject><ispartof>Journal of applied polymer science, 2021-09, Vol.138 (33), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</citedby><cites>FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</cites><orcidid>0000-0002-2762-6818 ; 0000-0003-4162-5472 ; 0000-0001-9077-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.50806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.50806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Silva, Thiago Schroeder</creatorcontrib><creatorcontrib>Silva, Denise Abatti Kasper</creatorcontrib><creatorcontrib>Nogueira, André Lourenço</creatorcontrib><title>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</title><title>Journal of applied polymer science</title><description>Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.</description><subject>biopolymers and renewable polymers</subject><subject>Carboxymethyl cellulose</subject><subject>cellulose and other wood products</subject><subject>Diabetes mellitus</subject><subject>Differential scanning calorimetry</subject><subject>drug delivery systems</subject><subject>Emission analysis</subject><subject>Emulsifiers</subject><subject>Encapsulation</subject><subject>Field emission microscopy</subject><subject>Lactic acid</subject><subject>Materials science</subject><subject>Metformin</subject><subject>Microparticles</subject><subject>Polymers</subject><subject>Side effects</subject><subject>Spectrophotometry</subject><subject>Sustained release</subject><subject>Thermogravimetric analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtHYcJ_ZYRdykVHSA2XKdE9VVUgc7FcrGI_CMPAmGsDKd4Xznoh-ha0oWlJB0qft-wYkg-QmaUSKLJMtTcYpmsUcTISU_Rxch7AmhlJN8hswahsb5zh7wbqy9M7vWeVsDDscwaHuAGntoQQfAW-t6144deGtwGMMAHTau612IaDviTVWtvj4-y3WJO2u867UfrGkhXKKzRrcBrv7qHL3e372Uj0n1_PBUrqrEMJblCRVNmotaF0W-zRgjotFcaM55Y7hkTIIERiWHjBdNk3HJJdFQm7QmhRCxsjm6mfb23r0dIQxq747-EE-qlKeS5UWEUd1OKr4YgodG9d522o-KEvWToYoZqt8Mo11O9t22MP4P1WqzmSa-AbxHdMA</recordid><startdate>20210905</startdate><enddate>20210905</enddate><creator>Silva, Thiago Schroeder</creator><creator>Silva, Denise Abatti Kasper</creator><creator>Nogueira, André Lourenço</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2762-6818</orcidid><orcidid>https://orcid.org/0000-0003-4162-5472</orcidid><orcidid>https://orcid.org/0000-0001-9077-1519</orcidid></search><sort><creationdate>20210905</creationdate><title>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</title><author>Silva, Thiago Schroeder ; Silva, Denise Abatti Kasper ; Nogueira, André Lourenço</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biopolymers and renewable polymers</topic><topic>Carboxymethyl cellulose</topic><topic>cellulose and other wood products</topic><topic>Diabetes mellitus</topic><topic>Differential scanning calorimetry</topic><topic>drug delivery systems</topic><topic>Emission analysis</topic><topic>Emulsifiers</topic><topic>Encapsulation</topic><topic>Field emission microscopy</topic><topic>Lactic acid</topic><topic>Materials science</topic><topic>Metformin</topic><topic>Microparticles</topic><topic>Polymers</topic><topic>Side effects</topic><topic>Spectrophotometry</topic><topic>Sustained release</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago Schroeder</creatorcontrib><creatorcontrib>Silva, Denise Abatti Kasper</creatorcontrib><creatorcontrib>Nogueira, André Lourenço</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Thiago Schroeder</au><au>Silva, Denise Abatti Kasper</au><au>Nogueira, André Lourenço</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</atitle><jtitle>Journal of applied polymer science</jtitle><date>2021-09-05</date><risdate>2021</risdate><volume>138</volume><issue>33</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.50806</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2762-6818</orcidid><orcidid>https://orcid.org/0000-0003-4162-5472</orcidid><orcidid>https://orcid.org/0000-0001-9077-1519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2021-09, Vol.138 (33), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2529367788
source Wiley Online Library Journals Frontfile Complete
subjects biopolymers and renewable polymers
Carboxymethyl cellulose
cellulose and other wood products
Diabetes mellitus
Differential scanning calorimetry
drug delivery systems
Emission analysis
Emulsifiers
Encapsulation
Field emission microscopy
Lactic acid
Materials science
Metformin
Microparticles
Polymers
Side effects
Spectrophotometry
Sustained release
Thermogravimetric analysis
title Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20hydrochloride%20sustained%20release%20biopolymeric%20system%20composed%20by%20PLLA%E2%80%90CMC%20microparticles&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Silva,%20Thiago%20Schroeder&rft.date=2021-09-05&rft.volume=138&rft.issue=33&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.50806&rft_dat=%3Cproquest_cross%3E2529367788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529367788&rft_id=info:pmid/&rfr_iscdi=true