Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles
Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing se...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2021-09, Vol.138 (33), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 138 |
creator | Silva, Thiago Schroeder Silva, Denise Abatti Kasper Nogueira, André Lourenço |
description | Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism. |
doi_str_mv | 10.1002/app.50806 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529367788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529367788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtHYcJ_ZYRdykVHSA2XKdE9VVUgc7FcrGI_CMPAmGsDKd4Xznoh-ha0oWlJB0qft-wYkg-QmaUSKLJMtTcYpmsUcTISU_Rxch7AmhlJN8hswahsb5zh7wbqy9M7vWeVsDDscwaHuAGntoQQfAW-t6144deGtwGMMAHTau612IaDviTVWtvj4-y3WJO2u867UfrGkhXKKzRrcBrv7qHL3e372Uj0n1_PBUrqrEMJblCRVNmotaF0W-zRgjotFcaM55Y7hkTIIERiWHjBdNk3HJJdFQm7QmhRCxsjm6mfb23r0dIQxq747-EE-qlKeS5UWEUd1OKr4YgodG9d522o-KEvWToYoZqt8Mo11O9t22MP4P1WqzmSa-AbxHdMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529367788</pqid></control><display><type>article</type><title>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Silva, Thiago Schroeder ; Silva, Denise Abatti Kasper ; Nogueira, André Lourenço</creator><creatorcontrib>Silva, Thiago Schroeder ; Silva, Denise Abatti Kasper ; Nogueira, André Lourenço</creatorcontrib><description>Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.50806</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>biopolymers and renewable polymers ; Carboxymethyl cellulose ; cellulose and other wood products ; Diabetes mellitus ; Differential scanning calorimetry ; drug delivery systems ; Emission analysis ; Emulsifiers ; Encapsulation ; Field emission microscopy ; Lactic acid ; Materials science ; Metformin ; Microparticles ; Polymers ; Side effects ; Spectrophotometry ; Sustained release ; Thermogravimetric analysis</subject><ispartof>Journal of applied polymer science, 2021-09, Vol.138 (33), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</citedby><cites>FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</cites><orcidid>0000-0002-2762-6818 ; 0000-0003-4162-5472 ; 0000-0001-9077-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.50806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.50806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Silva, Thiago Schroeder</creatorcontrib><creatorcontrib>Silva, Denise Abatti Kasper</creatorcontrib><creatorcontrib>Nogueira, André Lourenço</creatorcontrib><title>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</title><title>Journal of applied polymer science</title><description>Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.</description><subject>biopolymers and renewable polymers</subject><subject>Carboxymethyl cellulose</subject><subject>cellulose and other wood products</subject><subject>Diabetes mellitus</subject><subject>Differential scanning calorimetry</subject><subject>drug delivery systems</subject><subject>Emission analysis</subject><subject>Emulsifiers</subject><subject>Encapsulation</subject><subject>Field emission microscopy</subject><subject>Lactic acid</subject><subject>Materials science</subject><subject>Metformin</subject><subject>Microparticles</subject><subject>Polymers</subject><subject>Side effects</subject><subject>Spectrophotometry</subject><subject>Sustained release</subject><subject>Thermogravimetric analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtHYcJ_ZYRdykVHSA2XKdE9VVUgc7FcrGI_CMPAmGsDKd4Xznoh-ha0oWlJB0qft-wYkg-QmaUSKLJMtTcYpmsUcTISU_Rxch7AmhlJN8hswahsb5zh7wbqy9M7vWeVsDDscwaHuAGntoQQfAW-t6144deGtwGMMAHTau612IaDviTVWtvj4-y3WJO2u867UfrGkhXKKzRrcBrv7qHL3e372Uj0n1_PBUrqrEMJblCRVNmotaF0W-zRgjotFcaM55Y7hkTIIERiWHjBdNk3HJJdFQm7QmhRCxsjm6mfb23r0dIQxq747-EE-qlKeS5UWEUd1OKr4YgodG9d522o-KEvWToYoZqt8Mo11O9t22MP4P1WqzmSa-AbxHdMA</recordid><startdate>20210905</startdate><enddate>20210905</enddate><creator>Silva, Thiago Schroeder</creator><creator>Silva, Denise Abatti Kasper</creator><creator>Nogueira, André Lourenço</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2762-6818</orcidid><orcidid>https://orcid.org/0000-0003-4162-5472</orcidid><orcidid>https://orcid.org/0000-0001-9077-1519</orcidid></search><sort><creationdate>20210905</creationdate><title>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</title><author>Silva, Thiago Schroeder ; Silva, Denise Abatti Kasper ; Nogueira, André Lourenço</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-18f268da776b43308fa58a555fc59339e9e3195e457ff459590aedc2d0788dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biopolymers and renewable polymers</topic><topic>Carboxymethyl cellulose</topic><topic>cellulose and other wood products</topic><topic>Diabetes mellitus</topic><topic>Differential scanning calorimetry</topic><topic>drug delivery systems</topic><topic>Emission analysis</topic><topic>Emulsifiers</topic><topic>Encapsulation</topic><topic>Field emission microscopy</topic><topic>Lactic acid</topic><topic>Materials science</topic><topic>Metformin</topic><topic>Microparticles</topic><topic>Polymers</topic><topic>Side effects</topic><topic>Spectrophotometry</topic><topic>Sustained release</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago Schroeder</creatorcontrib><creatorcontrib>Silva, Denise Abatti Kasper</creatorcontrib><creatorcontrib>Nogueira, André Lourenço</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Thiago Schroeder</au><au>Silva, Denise Abatti Kasper</au><au>Nogueira, André Lourenço</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles</atitle><jtitle>Journal of applied polymer science</jtitle><date>2021-09-05</date><risdate>2021</risdate><volume>138</volume><issue>33</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Metformin hydrochloride (MetHCl) is a drug extensively used to treat diabetes mellitus Type 2. However, its high hydrophilicity drastically reduces its metabolic absorption. Consequently, high drug concentrations should be taken by patients to achieve the desired therapeutical efficiency, causing several side effects. The present study proposes the development of a MetHCl sustained release biopolymeric system composed of poly(l‐lactic acid) (PLLA) and carboxymethyl cellulose (CMC) as a strategy to minimize the problems aforementioned. The PLLA‐CMC microparticles were produced by the double emulsion‐solvent evaporation technique using two distinct emulsifiers in the first emulsion (Span 80 and Tween 80). The microparticles were characterized by ultraviolet–visible spectrophotometry, scanning electron microscopy with field emission gun, thermogravimetric analyses, and differential scanning calorimetry (DSC). Additionally, in vitro drug release assays were performed. The results demonstrated that the emulsion stability and encapsulation efficiency increased in a dependent fashion way with the CMC concentration. DSC findings showed that the choice of the emulsifier of the first emulsion influences the polymer particle's crystallinity and, consequently, the releasing behavior of the drug. The in vitro studies revealed that the encapsulation of MetHCl in PLLA‐CMC microparticles is a promising sustained release system compatible with a zero‐order kinetic mechanism.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.50806</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2762-6818</orcidid><orcidid>https://orcid.org/0000-0003-4162-5472</orcidid><orcidid>https://orcid.org/0000-0001-9077-1519</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2021-09, Vol.138 (33), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2529367788 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | biopolymers and renewable polymers Carboxymethyl cellulose cellulose and other wood products Diabetes mellitus Differential scanning calorimetry drug delivery systems Emission analysis Emulsifiers Encapsulation Field emission microscopy Lactic acid Materials science Metformin Microparticles Polymers Side effects Spectrophotometry Sustained release Thermogravimetric analysis |
title | Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20hydrochloride%20sustained%20release%20biopolymeric%20system%20composed%20by%20PLLA%E2%80%90CMC%20microparticles&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Silva,%20Thiago%20Schroeder&rft.date=2021-09-05&rft.volume=138&rft.issue=33&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.50806&rft_dat=%3Cproquest_cross%3E2529367788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529367788&rft_id=info:pmid/&rfr_iscdi=true |