The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics
We present an overview of the Pseudo-Direct Numerical Simulation (P-DNS in short) method for the solution of multi-scale phenomena. The method can be seen as an adaptation of the variational multi-scale (VMS) method, where the fine solution is solved numerically instead of analytically. Also, from t...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2021-07, Vol.380, p.113774, Article 113774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113774 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 380 |
creator | Idelsohn, Sergio R. Gimenez, Juan M. Nigro, Norberto M. Oñate, Eugenio |
description | We present an overview of the Pseudo-Direct Numerical Simulation (P-DNS in short) method for the solution of multi-scale phenomena. The method can be seen as an adaptation of the variational multi-scale (VMS) method, where the fine solution is solved numerically instead of analytically. Also, from the point of view of homogenization methods it can be seen as an evolution of Finite Element square (FE2) methods, where the most expensive part of the computations is performed offline. The name of P-DNS arises from the premise that in all multi-scale simulations the numerical result obtained with a very fine discretization is correct without the need to introduce any additional model (i.e. turbulence models) or stabilization procedures for transport equation terms (as in residual-based VMS methods). What is intended here is that the P-DNS solution tends to the DNS solution of the problem, accepting as a premise that the DNS solution is a reliable result. In this paper we present first an overview of the P-DNS methodology in the context of an abstract Dirichlet problem involving a second order differential operator that could be non-symmetric and non-necessarily positive definite. Next, the P-DNS approach is applied to the fluid mechanics equations accounting for turbulent phenomena. Examples showing the applicability of the P-DNS method for solving transport problems involving different scales are then presented. |
doi_str_mv | 10.1016/j.cma.2021.113774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529322196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782521001109</els_id><sourcerecordid>2529322196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-519def9fa996b5bad515c6471ce8593251296640a9a7036d9adb78ed4c717be83</originalsourceid><addsrcrecordid>eNqNkUFr2zAYQEVZoVnbH9CbocfhVJ9sSRY7jaxrC2UtND0LWfpMFGIrk-yN_fspcdhxTBeBeE_6eCLkBugSKIi77dL2ZskogyVAJWV9RhbQSFUyqJoPZEFpzUvZMH5BPqa0pXk1wBbkbb3B4jXh5EL51Ue0Y_F96jF6a3bFm--nnRl9GIoex01wRRdikc9GX6YMYLGPod1hnwp_QOzGDN6mK3LemV3C69N-Sd6_3a9Xj-Xzy8PT6stzaSvGx5KDctipziglWt4ax4FbUUuw2HCVEWBKiJoaZSSthFPGtbJBV1sJssWmuiS38715ih8TplFvwxSH_KRmnOUbGCiRKZgpG0NKETu9j7438bcGqg_t9FbndvrQTs_tstPMzi9sQ5esx8HiXy-3EzXUohKHjGzlx2OjVZiGMauf_l_N9OeZxtzpp8eoT4Y7_oV2wf9jzD_POJb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529322196</pqid></control><display><type>article</type><title>The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Idelsohn, Sergio R. ; Gimenez, Juan M. ; Nigro, Norberto M. ; Oñate, Eugenio</creator><creatorcontrib>Idelsohn, Sergio R. ; Gimenez, Juan M. ; Nigro, Norberto M. ; Oñate, Eugenio</creatorcontrib><description>We present an overview of the Pseudo-Direct Numerical Simulation (P-DNS in short) method for the solution of multi-scale phenomena. The method can be seen as an adaptation of the variational multi-scale (VMS) method, where the fine solution is solved numerically instead of analytically. Also, from the point of view of homogenization methods it can be seen as an evolution of Finite Element square (FE2) methods, where the most expensive part of the computations is performed offline. The name of P-DNS arises from the premise that in all multi-scale simulations the numerical result obtained with a very fine discretization is correct without the need to introduce any additional model (i.e. turbulence models) or stabilization procedures for transport equation terms (as in residual-based VMS methods). What is intended here is that the P-DNS solution tends to the DNS solution of the problem, accepting as a premise that the DNS solution is a reliable result. In this paper we present first an overview of the P-DNS methodology in the context of an abstract Dirichlet problem involving a second order differential operator that could be non-symmetric and non-necessarily positive definite. Next, the P-DNS approach is applied to the fluid mechanics equations accounting for turbulent phenomena. Examples showing the applicability of the P-DNS method for solving transport problems involving different scales are then presented.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2021.113774</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Advection–diffusion–reaction ; Computational fluid dynamics ; Computer simulation ; Differential equations ; Direct numerical simulation ; Dirichlet problem ; Engineering ; Engineering, Multidisciplinary ; Fluid flow ; Fluid mechanics ; Homogenization ; Mathematical analysis ; Mathematics ; Mathematics, Interdisciplinary Applications ; Mechanics ; Multi-scale ; Operators (mathematics) ; Physical Sciences ; Science & Technology ; Stabilization ; Technology ; Transport equations ; Turbulence ; Turbulence models</subject><ispartof>Computer methods in applied mechanics and engineering, 2021-07, Vol.380, p.113774, Article 113774</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000641463600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c325t-519def9fa996b5bad515c6471ce8593251296640a9a7036d9adb78ed4c717be83</citedby><cites>FETCH-LOGICAL-c325t-519def9fa996b5bad515c6471ce8593251296640a9a7036d9adb78ed4c717be83</cites><orcidid>0000-0002-0602-8245 ; 0000-0002-8989-7357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2021.113774$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,39265,46002</link.rule.ids></links><search><creatorcontrib>Idelsohn, Sergio R.</creatorcontrib><creatorcontrib>Gimenez, Juan M.</creatorcontrib><creatorcontrib>Nigro, Norberto M.</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><title>The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics</title><title>Computer methods in applied mechanics and engineering</title><addtitle>COMPUT METHOD APPL M</addtitle><description>We present an overview of the Pseudo-Direct Numerical Simulation (P-DNS in short) method for the solution of multi-scale phenomena. The method can be seen as an adaptation of the variational multi-scale (VMS) method, where the fine solution is solved numerically instead of analytically. Also, from the point of view of homogenization methods it can be seen as an evolution of Finite Element square (FE2) methods, where the most expensive part of the computations is performed offline. The name of P-DNS arises from the premise that in all multi-scale simulations the numerical result obtained with a very fine discretization is correct without the need to introduce any additional model (i.e. turbulence models) or stabilization procedures for transport equation terms (as in residual-based VMS methods). What is intended here is that the P-DNS solution tends to the DNS solution of the problem, accepting as a premise that the DNS solution is a reliable result. In this paper we present first an overview of the P-DNS methodology in the context of an abstract Dirichlet problem involving a second order differential operator that could be non-symmetric and non-necessarily positive definite. Next, the P-DNS approach is applied to the fluid mechanics equations accounting for turbulent phenomena. Examples showing the applicability of the P-DNS method for solving transport problems involving different scales are then presented.</description><subject>Advection–diffusion–reaction</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Direct numerical simulation</subject><subject>Dirichlet problem</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Homogenization</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Mechanics</subject><subject>Multi-scale</subject><subject>Operators (mathematics)</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Stabilization</subject><subject>Technology</subject><subject>Transport equations</subject><subject>Turbulence</subject><subject>Turbulence models</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUFr2zAYQEVZoVnbH9CbocfhVJ9sSRY7jaxrC2UtND0LWfpMFGIrk-yN_fspcdhxTBeBeE_6eCLkBugSKIi77dL2ZskogyVAJWV9RhbQSFUyqJoPZEFpzUvZMH5BPqa0pXk1wBbkbb3B4jXh5EL51Ue0Y_F96jF6a3bFm--nnRl9GIoex01wRRdikc9GX6YMYLGPod1hnwp_QOzGDN6mK3LemV3C69N-Sd6_3a9Xj-Xzy8PT6stzaSvGx5KDctipziglWt4ax4FbUUuw2HCVEWBKiJoaZSSthFPGtbJBV1sJssWmuiS38715ih8TplFvwxSH_KRmnOUbGCiRKZgpG0NKETu9j7438bcGqg_t9FbndvrQTs_tstPMzi9sQ5esx8HiXy-3EzXUohKHjGzlx2OjVZiGMauf_l_N9OeZxtzpp8eoT4Y7_oV2wf9jzD_POJb8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Idelsohn, Sergio R.</creator><creator>Gimenez, Juan M.</creator><creator>Nigro, Norberto M.</creator><creator>Oñate, Eugenio</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier BV</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0602-8245</orcidid><orcidid>https://orcid.org/0000-0002-8989-7357</orcidid></search><sort><creationdate>20210701</creationdate><title>The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics</title><author>Idelsohn, Sergio R. ; Gimenez, Juan M. ; Nigro, Norberto M. ; Oñate, Eugenio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-519def9fa996b5bad515c6471ce8593251296640a9a7036d9adb78ed4c717be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advection–diffusion–reaction</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Direct numerical simulation</topic><topic>Dirichlet problem</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Homogenization</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Mechanics</topic><topic>Multi-scale</topic><topic>Operators (mathematics)</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Stabilization</topic><topic>Technology</topic><topic>Transport equations</topic><topic>Turbulence</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idelsohn, Sergio R.</creatorcontrib><creatorcontrib>Gimenez, Juan M.</creatorcontrib><creatorcontrib>Nigro, Norberto M.</creatorcontrib><creatorcontrib>Oñate, Eugenio</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idelsohn, Sergio R.</au><au>Gimenez, Juan M.</au><au>Nigro, Norberto M.</au><au>Oñate, Eugenio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><stitle>COMPUT METHOD APPL M</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>380</volume><spage>113774</spage><pages>113774-</pages><artnum>113774</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present an overview of the Pseudo-Direct Numerical Simulation (P-DNS in short) method for the solution of multi-scale phenomena. The method can be seen as an adaptation of the variational multi-scale (VMS) method, where the fine solution is solved numerically instead of analytically. Also, from the point of view of homogenization methods it can be seen as an evolution of Finite Element square (FE2) methods, where the most expensive part of the computations is performed offline. The name of P-DNS arises from the premise that in all multi-scale simulations the numerical result obtained with a very fine discretization is correct without the need to introduce any additional model (i.e. turbulence models) or stabilization procedures for transport equation terms (as in residual-based VMS methods). What is intended here is that the P-DNS solution tends to the DNS solution of the problem, accepting as a premise that the DNS solution is a reliable result. In this paper we present first an overview of the P-DNS methodology in the context of an abstract Dirichlet problem involving a second order differential operator that could be non-symmetric and non-necessarily positive definite. Next, the P-DNS approach is applied to the fluid mechanics equations accounting for turbulent phenomena. Examples showing the applicability of the P-DNS method for solving transport problems involving different scales are then presented.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2021.113774</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-0602-8245</orcidid><orcidid>https://orcid.org/0000-0002-8989-7357</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2021-07, Vol.380, p.113774, Article 113774 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2529322196 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Advection–diffusion–reaction Computational fluid dynamics Computer simulation Differential equations Direct numerical simulation Dirichlet problem Engineering Engineering, Multidisciplinary Fluid flow Fluid mechanics Homogenization Mathematical analysis Mathematics Mathematics, Interdisciplinary Applications Mechanics Multi-scale Operators (mathematics) Physical Sciences Science & Technology Stabilization Technology Transport equations Turbulence Turbulence models |
title | The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Pseudo-Direct%20Numerical%20Simulation%20method%20for%20multi-scale%20problems%20in%20mechanics&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Idelsohn,%20Sergio%20R.&rft.date=2021-07-01&rft.volume=380&rft.spage=113774&rft.pages=113774-&rft.artnum=113774&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2021.113774&rft_dat=%3Cproquest_cross%3E2529322196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529322196&rft_id=info:pmid/&rft_els_id=S0045782521001109&rfr_iscdi=true |