Deep adversarial data augmentation with attribute guided for person re-identification

Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2021-06, Vol.15 (4), p.655-662
Hauptverfasser: Wu, Qiong, Dai, Pingyang, Chen, Peixian, Huang, Yuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue 4
container_start_page 655
container_title Signal, image and video processing
container_volume 15
creator Wu, Qiong
Dai, Pingyang
Chen, Peixian
Huang, Yuyu
description Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.
doi_str_mv 10.1007/s11760-019-01523-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529301211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529301211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFcziW3So6yfsODFPYc0ma5ZdtuapIr_3rgVvRkYMgzPMwMvIefALoExeRUBZMUKBnWukotCHJEZqEoUIAGOf3smTskixi3LT3CpKjUj61vEgRr3jiGa4M2OOpMMNeNmj10yyfcd_fDplZqUgm_GhHQzeoeOtn2gQ7YyELDIoy751tuDckZOWrOLuPj552R9f_eyfCxWzw9Py5tVYQXUqWicQHSiLpkFo2TjFLeqvObcSFlZ11rmcqNKaTKvmACoRIVcVg4AVINiTi6mvUPo30aMSW_7MXT5pOYlrwUDDpApPlE29DEGbPUQ_N6ETw1MfyeopwR1TlAfEtQiS2KSYoa7DYa_1f9YXyLnc4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529301211</pqid></control><display><type>article</type><title>Deep adversarial data augmentation with attribute guided for person re-identification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Qiong ; Dai, Pingyang ; Chen, Peixian ; Huang, Yuyu</creator><creatorcontrib>Wu, Qiong ; Dai, Pingyang ; Chen, Peixian ; Huang, Yuyu</creatorcontrib><description>Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-019-01523-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Cameras ; Computer Imaging ; Computer Science ; Data augmentation ; Datasets ; Image Processing and Computer Vision ; Learning ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2021-06, Vol.15 (4), p.655-662</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</citedby><cites>FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</cites><orcidid>0000-0001-9780-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-019-01523-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-019-01523-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Dai, Pingyang</creatorcontrib><creatorcontrib>Chen, Peixian</creatorcontrib><creatorcontrib>Huang, Yuyu</creatorcontrib><title>Deep adversarial data augmentation with attribute guided for person re-identification</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.</description><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFcziW3So6yfsODFPYc0ma5ZdtuapIr_3rgVvRkYMgzPMwMvIefALoExeRUBZMUKBnWukotCHJEZqEoUIAGOf3smTskixi3LT3CpKjUj61vEgRr3jiGa4M2OOpMMNeNmj10yyfcd_fDplZqUgm_GhHQzeoeOtn2gQ7YyELDIoy751tuDckZOWrOLuPj552R9f_eyfCxWzw9Py5tVYQXUqWicQHSiLpkFo2TjFLeqvObcSFlZ11rmcqNKaTKvmACoRIVcVg4AVINiTi6mvUPo30aMSW_7MXT5pOYlrwUDDpApPlE29DEGbPUQ_N6ETw1MfyeopwR1TlAfEtQiS2KSYoa7DYa_1f9YXyLnc4w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wu, Qiong</creator><creator>Dai, Pingyang</creator><creator>Chen, Peixian</creator><creator>Huang, Yuyu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9780-271X</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep adversarial data augmentation with attribute guided for person re-identification</title><author>Wu, Qiong ; Dai, Pingyang ; Chen, Peixian ; Huang, Yuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Dai, Pingyang</creatorcontrib><creatorcontrib>Chen, Peixian</creatorcontrib><creatorcontrib>Huang, Yuyu</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qiong</au><au>Dai, Pingyang</au><au>Chen, Peixian</au><au>Huang, Yuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep adversarial data augmentation with attribute guided for person re-identification</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>15</volume><issue>4</issue><spage>655</spage><epage>662</epage><pages>655-662</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-019-01523-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9780-271X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2021-06, Vol.15 (4), p.655-662
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2529301211
source SpringerLink Journals - AutoHoldings
subjects Cameras
Computer Imaging
Computer Science
Data augmentation
Datasets
Image Processing and Computer Vision
Learning
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
title Deep adversarial data augmentation with attribute guided for person re-identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20adversarial%20data%20augmentation%20with%20attribute%20guided%20for%20person%20re-identification&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wu,%20Qiong&rft.date=2021-06-01&rft.volume=15&rft.issue=4&rft.spage=655&rft.epage=662&rft.pages=655-662&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-019-01523-3&rft_dat=%3Cproquest_cross%3E2529301211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529301211&rft_id=info:pmid/&rfr_iscdi=true