Deep adversarial data augmentation with attribute guided for person re-identification
Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity l...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2021-06, Vol.15 (4), p.655-662 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 662 |
---|---|
container_issue | 4 |
container_start_page | 655 |
container_title | Signal, image and video processing |
container_volume | 15 |
creator | Wu, Qiong Dai, Pingyang Chen, Peixian Huang, Yuyu |
description | Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID. |
doi_str_mv | 10.1007/s11760-019-01523-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529301211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529301211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFcziW3So6yfsODFPYc0ma5ZdtuapIr_3rgVvRkYMgzPMwMvIefALoExeRUBZMUKBnWukotCHJEZqEoUIAGOf3smTskixi3LT3CpKjUj61vEgRr3jiGa4M2OOpMMNeNmj10yyfcd_fDplZqUgm_GhHQzeoeOtn2gQ7YyELDIoy751tuDckZOWrOLuPj552R9f_eyfCxWzw9Py5tVYQXUqWicQHSiLpkFo2TjFLeqvObcSFlZ11rmcqNKaTKvmACoRIVcVg4AVINiTi6mvUPo30aMSW_7MXT5pOYlrwUDDpApPlE29DEGbPUQ_N6ETw1MfyeopwR1TlAfEtQiS2KSYoa7DYa_1f9YXyLnc4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529301211</pqid></control><display><type>article</type><title>Deep adversarial data augmentation with attribute guided for person re-identification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Qiong ; Dai, Pingyang ; Chen, Peixian ; Huang, Yuyu</creator><creatorcontrib>Wu, Qiong ; Dai, Pingyang ; Chen, Peixian ; Huang, Yuyu</creatorcontrib><description>Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-019-01523-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Cameras ; Computer Imaging ; Computer Science ; Data augmentation ; Datasets ; Image Processing and Computer Vision ; Learning ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2021-06, Vol.15 (4), p.655-662</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</citedby><cites>FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</cites><orcidid>0000-0001-9780-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-019-01523-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-019-01523-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Dai, Pingyang</creatorcontrib><creatorcontrib>Chen, Peixian</creatorcontrib><creatorcontrib>Huang, Yuyu</creatorcontrib><title>Deep adversarial data augmentation with attribute guided for person re-identification</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.</description><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFcziW3So6yfsODFPYc0ma5ZdtuapIr_3rgVvRkYMgzPMwMvIefALoExeRUBZMUKBnWukotCHJEZqEoUIAGOf3smTskixi3LT3CpKjUj61vEgRr3jiGa4M2OOpMMNeNmj10yyfcd_fDplZqUgm_GhHQzeoeOtn2gQ7YyELDIoy751tuDckZOWrOLuPj552R9f_eyfCxWzw9Py5tVYQXUqWicQHSiLpkFo2TjFLeqvObcSFlZ11rmcqNKaTKvmACoRIVcVg4AVINiTi6mvUPo30aMSW_7MXT5pOYlrwUDDpApPlE29DEGbPUQ_N6ETw1MfyeopwR1TlAfEtQiS2KSYoa7DYa_1f9YXyLnc4w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wu, Qiong</creator><creator>Dai, Pingyang</creator><creator>Chen, Peixian</creator><creator>Huang, Yuyu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9780-271X</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep adversarial data augmentation with attribute guided for person re-identification</title><author>Wu, Qiong ; Dai, Pingyang ; Chen, Peixian ; Huang, Yuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bd3eed3950c1a87bd82c85422a776cdfc0d776857ac3180311636e276d1118be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Dai, Pingyang</creatorcontrib><creatorcontrib>Chen, Peixian</creatorcontrib><creatorcontrib>Huang, Yuyu</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qiong</au><au>Dai, Pingyang</au><au>Chen, Peixian</au><au>Huang, Yuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep adversarial data augmentation with attribute guided for person re-identification</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>15</volume><issue>4</issue><spage>655</spage><epage>662</epage><pages>655-662</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-019-01523-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9780-271X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2021-06, Vol.15 (4), p.655-662 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2529301211 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cameras Computer Imaging Computer Science Data augmentation Datasets Image Processing and Computer Vision Learning Multimedia Information Systems Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Vision |
title | Deep adversarial data augmentation with attribute guided for person re-identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20adversarial%20data%20augmentation%20with%20attribute%20guided%20for%20person%20re-identification&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wu,%20Qiong&rft.date=2021-06-01&rft.volume=15&rft.issue=4&rft.spage=655&rft.epage=662&rft.pages=655-662&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-019-01523-3&rft_dat=%3Cproquest_cross%3E2529301211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529301211&rft_id=info:pmid/&rfr_iscdi=true |