Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial

Metamaterials are artificially structured materials that enable wave attenuation in band gaps. However, opening an ultralow-frequency band gap is still a challenge, since it is hard to realize near-zero stiffness in a traditional way. In this paper, a one-dimensional tunable quasi-zero-stiffness (QZ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanics and materials in design 2021-06, Vol.17 (2), p.285-300
Hauptverfasser: Zhou, Jiaxi, Pan, Hongbin, Cai, Changqi, Xu, Daolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 285
container_title International journal of mechanics and materials in design
container_volume 17
creator Zhou, Jiaxi
Pan, Hongbin
Cai, Changqi
Xu, Daolin
description Metamaterials are artificially structured materials that enable wave attenuation in band gaps. However, opening an ultralow-frequency band gap is still a challenge, since it is hard to realize near-zero stiffness in a traditional way. In this paper, a one-dimensional tunable quasi-zero-stiffness (QZS) metamaterial is engineered for ultralow-frequency (about a few tens Hertz) wave attenuation. Design optimization on the configuration of this new metamaterial is conducted to achieve quasi-zero stiffness. The dispersion relation is derived theoretically based on a lumped diatomic chain model, and then the band structure is revealed. The characteristics of longitudinal wave propagation in the metamaterial are studied by both numerical analyses and FE simulations, which are also validated by experimental tests. The results indicate that the stiffness is deformation-related, and the band gap can be tuned substantially by just changing the pre-compression. Therefore, the quasi-zero stiffness and then the ultralow-frequency band gap can be fulfilled by pre-compressing the metamaterial properly.
doi_str_mv 10.1007/s10999-020-09525-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529301171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529301171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-84a870b2f7a405ee1237a644475683f6e23a143e3fa6ad6e96babd06f8bc0f33</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA52iy2c3HUYpfUPDSe5jdTmTLbrZNspb617u1gjdPMwzvPeb9CLkV_F5wrh-S4NZaxgvOuK2KiukzMhOVlsyYUpwfd2WZ0EJekquUNpxLLoyZEViNAeoO6djlCN2wpz7ibsTQHOgePpFCzhhGyO0QEm0DHQKyddtjSNMFOrobIbXsC-PAUm69D5gS7TFDDxljC901ufDQJbz5nXOyen5aLV7Z8v3lbfG4ZI0UNjNTgtG8LryGkleIopAaVFmWulJGeoWFBFFKlB4UrBVaVUO95sqbuuFeyjm5O8Vu4zD9n7LbDGOcPkyuqAo71T22n5PipGrikFJE77ax7SEenODuSNKdSLqJpPsh6fRkkidTmsThA-Nf9D-ub5-KeLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529301171</pqid></control><display><type>article</type><title>Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial</title><source>Springer journals</source><creator>Zhou, Jiaxi ; Pan, Hongbin ; Cai, Changqi ; Xu, Daolin</creator><creatorcontrib>Zhou, Jiaxi ; Pan, Hongbin ; Cai, Changqi ; Xu, Daolin</creatorcontrib><description>Metamaterials are artificially structured materials that enable wave attenuation in band gaps. However, opening an ultralow-frequency band gap is still a challenge, since it is hard to realize near-zero stiffness in a traditional way. In this paper, a one-dimensional tunable quasi-zero-stiffness (QZS) metamaterial is engineered for ultralow-frequency (about a few tens Hertz) wave attenuation. Design optimization on the configuration of this new metamaterial is conducted to achieve quasi-zero stiffness. The dispersion relation is derived theoretically based on a lumped diatomic chain model, and then the band structure is revealed. The characteristics of longitudinal wave propagation in the metamaterial are studied by both numerical analyses and FE simulations, which are also validated by experimental tests. The results indicate that the stiffness is deformation-related, and the band gap can be tuned substantially by just changing the pre-compression. Therefore, the quasi-zero stiffness and then the ultralow-frequency band gap can be fulfilled by pre-compressing the metamaterial properly.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-020-09525-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Classical Mechanics ; Configuration management ; Design optimization ; Energy gap ; Engineering ; Engineering Design ; Extremely low frequencies ; Longitudinal waves ; Metamaterials ; Solid Mechanics ; Stiffness ; Wave attenuation ; Wave propagation</subject><ispartof>International journal of mechanics and materials in design, 2021-06, Vol.17 (2), p.285-300</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-84a870b2f7a405ee1237a644475683f6e23a143e3fa6ad6e96babd06f8bc0f33</citedby><cites>FETCH-LOGICAL-c319t-84a870b2f7a405ee1237a644475683f6e23a143e3fa6ad6e96babd06f8bc0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10999-020-09525-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10999-020-09525-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Jiaxi</creatorcontrib><creatorcontrib>Pan, Hongbin</creatorcontrib><creatorcontrib>Cai, Changqi</creatorcontrib><creatorcontrib>Xu, Daolin</creatorcontrib><title>Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>Metamaterials are artificially structured materials that enable wave attenuation in band gaps. However, opening an ultralow-frequency band gap is still a challenge, since it is hard to realize near-zero stiffness in a traditional way. In this paper, a one-dimensional tunable quasi-zero-stiffness (QZS) metamaterial is engineered for ultralow-frequency (about a few tens Hertz) wave attenuation. Design optimization on the configuration of this new metamaterial is conducted to achieve quasi-zero stiffness. The dispersion relation is derived theoretically based on a lumped diatomic chain model, and then the band structure is revealed. The characteristics of longitudinal wave propagation in the metamaterial are studied by both numerical analyses and FE simulations, which are also validated by experimental tests. The results indicate that the stiffness is deformation-related, and the band gap can be tuned substantially by just changing the pre-compression. Therefore, the quasi-zero stiffness and then the ultralow-frequency band gap can be fulfilled by pre-compressing the metamaterial properly.</description><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Configuration management</subject><subject>Design optimization</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Extremely low frequencies</subject><subject>Longitudinal waves</subject><subject>Metamaterials</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><subject>Wave attenuation</subject><subject>Wave propagation</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gKeA52iy2c3HUYpfUPDSe5jdTmTLbrZNspb617u1gjdPMwzvPeb9CLkV_F5wrh-S4NZaxgvOuK2KiukzMhOVlsyYUpwfd2WZ0EJekquUNpxLLoyZEViNAeoO6djlCN2wpz7ibsTQHOgePpFCzhhGyO0QEm0DHQKyddtjSNMFOrobIbXsC-PAUm69D5gS7TFDDxljC901ufDQJbz5nXOyen5aLV7Z8v3lbfG4ZI0UNjNTgtG8LryGkleIopAaVFmWulJGeoWFBFFKlB4UrBVaVUO95sqbuuFeyjm5O8Vu4zD9n7LbDGOcPkyuqAo71T22n5PipGrikFJE77ax7SEenODuSNKdSLqJpPsh6fRkkidTmsThA-Nf9D-ub5-KeLQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhou, Jiaxi</creator><creator>Pan, Hongbin</creator><creator>Cai, Changqi</creator><creator>Xu, Daolin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial</title><author>Zhou, Jiaxi ; Pan, Hongbin ; Cai, Changqi ; Xu, Daolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-84a870b2f7a405ee1237a644475683f6e23a143e3fa6ad6e96babd06f8bc0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Configuration management</topic><topic>Design optimization</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Extremely low frequencies</topic><topic>Longitudinal waves</topic><topic>Metamaterials</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><topic>Wave attenuation</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jiaxi</creatorcontrib><creatorcontrib>Pan, Hongbin</creatorcontrib><creatorcontrib>Cai, Changqi</creatorcontrib><creatorcontrib>Xu, Daolin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jiaxi</au><au>Pan, Hongbin</au><au>Cai, Changqi</au><au>Xu, Daolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>285</spage><epage>300</epage><pages>285-300</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>Metamaterials are artificially structured materials that enable wave attenuation in band gaps. However, opening an ultralow-frequency band gap is still a challenge, since it is hard to realize near-zero stiffness in a traditional way. In this paper, a one-dimensional tunable quasi-zero-stiffness (QZS) metamaterial is engineered for ultralow-frequency (about a few tens Hertz) wave attenuation. Design optimization on the configuration of this new metamaterial is conducted to achieve quasi-zero stiffness. The dispersion relation is derived theoretically based on a lumped diatomic chain model, and then the band structure is revealed. The characteristics of longitudinal wave propagation in the metamaterial are studied by both numerical analyses and FE simulations, which are also validated by experimental tests. The results indicate that the stiffness is deformation-related, and the band gap can be tuned substantially by just changing the pre-compression. Therefore, the quasi-zero stiffness and then the ultralow-frequency band gap can be fulfilled by pre-compressing the metamaterial properly.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-020-09525-7</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-1713
ispartof International journal of mechanics and materials in design, 2021-06, Vol.17 (2), p.285-300
issn 1569-1713
1573-8841
language eng
recordid cdi_proquest_journals_2529301171
source Springer journals
subjects Characterization and Evaluation of Materials
Classical Mechanics
Configuration management
Design optimization
Energy gap
Engineering
Engineering Design
Extremely low frequencies
Longitudinal waves
Metamaterials
Solid Mechanics
Stiffness
Wave attenuation
Wave propagation
title Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20ultralow%20frequency%20wave%20attenuations%20in%20one-dimensional%20quasi-zero-stiffness%20metamaterial&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Zhou,%20Jiaxi&rft.date=2021-06-01&rft.volume=17&rft.issue=2&rft.spage=285&rft.epage=300&rft.pages=285-300&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-020-09525-7&rft_dat=%3Cproquest_cross%3E2529301171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529301171&rft_id=info:pmid/&rfr_iscdi=true